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Abstract

Building on Koop, [Koop et al. (1996) Impulse response analysis in nonlinear multivariate models. Journal of
Econometrics 74, 119–147] we propose the ‘generalized’ impulse response analysis for unrestricted vector autoregressive
(VAR) and cointegrated VAR models. Unlike the traditional impulse response analysis, our approach does not require
orthogonalization of shocks and is invariant to the ordering of the variables in the VAR. The approach is also used in the
construction of order-invariant forecast error variance decompositions.  1998 Elsevier Science S.A.
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1. Introduction

Following Sims (1980) seminal paper, dynamic analysis of vector autoregressive (VAR) models is
routinely carried out using the ‘orthogonalized’ impulse responses, where the underlying shocks to the
VAR model are orthogonalized using the Cholesky decomposition before impulse responses, or
forecast error variance decompositions are computed. This approach is not, however, invariant to the

¨ordering of the variables in the VAR. See, for example, Lutkepohl (1991), (Section 2.3.2).
In this note, building on Koop et al. (1996), we propose an alternative approach to impulse

response which does not have the above shortcoming. We refer to this as the generalized impulse
response analysis. In particular, we show that for a non-diagonal error variance matrix the
orthogonalized and the generalized impulse responses coincide only in the case of the impulse
responses of the shocks to the first equation in the VAR. In Section 4 the proposed approach is applied
to the cointegrated VAR models, and it is shown that the maximum likelihood estimator of the

]Œgeneralized impulse responses is T-consistent and asymptotically normally distributed.
We provide an empirical illustration of the substantial differences that could exist between the two
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approaches, using a trivariate VAR model containing U.S. quarterly observations on real investment
and consumption expenditures and output over 1948(1)–1988(4).

2. The generalized impulse response functions

Consider the augmented vector autoregressive model,

p

x 5O F x 1 Cw 1 ´ , t 5 1, 2, . . . ,T, (1)t i t2i t t
i51

where x 5(x , x , . . . ,x )9 is an m31 vector of jointly determined dependent variables, w is ant 1t 2t mt t

q31 vector of deterministic and/or exogenous variables, and hF , i51, 2, . . . , pj and C are m3mi

and m3q coefficient matrices. We make the following standard assumptions: (see, for example,
¨Lutkepohl, 1991, Chapter 2, and Pesaran and Pesaran, 1997, Section 19.3).

Assumption 2.1 E(´ )50, E(´ ´ 9 )5o for all t, where o 5hs , i, j51, 2, . . . ,mj is an m3m positivet t t ij

9definite matrix, E(´ ´ )50 for all t5t9 and E(´ uw )50.t t9 t t

p
iAssumption 2.2 All the roots of uI 2 o F z u50 fall outside the unit circle.m i

i51

Assumption 2.3 x , x , . . . ,x , w , t51, 2, . . . ,T, are not perfectly collinear.t21 t22 t2p t

Under Assumption 2.2, x would be covariance-stationary, and (1) can be rewritten as the infinitet

moving average representation,

` `

x 5O A ´ 1O G w , t 5 1, 2, . . . ,T, (2)t i t2i i t2i
i50 i50

where the m3m coefficient matrices A can be obtained using the following recursive relations:i

A 5 F A 1 F A 1 ? ? ? 1 F A , i 5 1, 2, . . . , (3)i 1 i21 2 i22 p i2p

with A 5I and A 50 for i,0, and G 5A c.0 m i i i

An impulse response function measures the time profile of the effect of shocks at a given point in
time on the (expected) future values of variables in a dynamical system. The best way to describe an
impulse response is to view it as the outcome of a conceptual experiment in which the time profile of
the effect of a hypothetical m31 vector of shocks of size d 5(d , . . . ,d )9, say, hitting the economy at1 m

time t is compared with a base-line profile at time t1n, given the economy’s history. There are three
main issues: (i) The types of shocks hitting the economy at time t; (ii) the state of the economy at
time t21 before being shocked; and (iii) the types of shocks expected to hit the economy from t11
to t1n.

Denoting the known history of the economy up to time t21 by the non-decreasing information set
V , the generalized impulse response function of x at horizon n, advanced in Koop et al. (1996), ist21 t

defined by
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GI (n, d, V ) 5 E(x u´ 5 d, V ) 2 E(x uV ). (4)x t21 t1n t t21 t1n t21

Using (4) in (2), we have GI (n, d, V )5A d, which is independent of V , but depends on thex t21 n t21
1composition of shocks defined by d.

Clearly, the appropriate choice of hypothesized vector of shocks, d, is central to the properties of
the impulse response function. The traditional approach, suggested by Sims (1980), is to resolve the
problem surrounding the choice of d by using the Cholesky decomposition of S :

PP9 5 S, (5)

where P is an m3m lower triangular matrix. Then, (2) can be rewritten as

` ` ` `

21x 5O (A P)(P ´ ) 1O G w 5O (A P)j 1O G w , t 5 1, 2, . . . ,T, (6)t i t2i i t2i i t2i i t2i
i50 i50 i50 i50

21 9such that j 5P ´ are orthogonalized; namely, E(j j )5I . Hence, the m31 vector of thet t t t m

orthogonalized impulse response function of a unit shock to the jth equation on x is given byt1n

o
c (n) 5 A Pe , n 5 0, 1, 2, . . . , (7)j n j

where e is an m31 selection vector with unity as its jth element and zeros elsewhere.j

An alternative approach would be to use (4) directly, but instead of shocking all the elements of ´ ,t
we could choose to shock only one element, say its jth element, and integrate out the effects of other
shocks using an assumed or the historically observed distribution of the errors. In this case we have

GI (n, d , V ) 5 E(x u´ 5 d , V ) 2 E(x uV ). (8)x j t21 t1n jt j t21 t1n t21

Assuming that ´ has a multivariate normal distribution, it is now easily seen (see also Koop et al.t
2(1996)) that

21 21E(´ u´ 5 d ) 5 (s , s , . . . s )9s d 5 Se s d .t jt j 1j 2j mj jj j j jj j

Hence, the m31 vector of the (unscaled) generalized impulse response of the effect of a shock in the
jth equation at time t on x is given byt1n

A Se dn j j
]] ]] , n 5 0, 1, 2, . . . . (9)] ]S DS Ds sjj jjœ œ

]By setting d 5 s , we obtain the scaled generalized impulse response function byj jjœ
1
]g 2 2c (n) 5 s A Se , n 5 0, 1, 2, . . . , (10)j jj n j

1This history invariance property of the impulse response is specific to linear systems and does not carry over to non-linear
models.
2When the distribution of the errors ´ are non-normal, one could obtain the conditional expectations E(´ u´ 5d ) byt t jt j

stochastic simulations, or by resampling techniques if the distribution of errors is not known.
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which measures the effect of one standard error shock to the jth equation at time t on expected values
of x at time t1n.

Finally, the above generalized impulses can also be used in the derivation of the forecast error
variance decompositions, defined as the proportion of the n-step ahead forecast error variance of
variable i which is accounted for by the innovations in variable j in the VAR. For an analysis of the

¨forecast error variance decompositions based on the orthogonalized impulse responses see Lutkepohl,
1991, Section 2.3.3. Denoting the orthogonalized and the generalized forecast error variance

o gdecompositions by u (n) and u (n), respectively, then for n50, 1, 2, . . . ,ij ij

n n2 21 29 9O (e A Pe ) s O (e A Se )l50 i l j ii l50 i l jo g
]]]]]] ]]]]]]]u (n) 5 , u (n) 5 , i, j 5 1, . . . ,m.n nij ij

9 9 9 9O (e A SA e ) O e A SA el50 i l l i l50 i l l i

m
oNotice that by construction o u (n)51. However, due to the non-zero covariance between theij

j51 m
g 3original (non-orthogonalized) shocks, in general o u (n)±1.ij

j51

3. The relationship between generalized and orthogonalized impulse responses

o gThe orthogonalized and the generalized impulse response functions, c (n) and c (n), differ in aj j

number of respects. The generalized impulse responses are invariant to the reordering of the variables
in the VAR, but this is not the case with the orthogonalized ones. Typically there are many alternative
reparametrizations that could be employed to compute orthogonalized impulse responses, and there is
no clear guidance as to which one of these possible parameterizations should be used. In contrast, the
generalized impulse responses are unique and fully take account of the historical patterns of
correlations observed amongst the different shocks.

4The relationship between the two impulse responses are set out in the following proposition:

Proposition 3.1 The generalized and the orthogonalized impulse responses coincide if o is diagonal.
In the case where o is non-diagonal,

g o
c (n) ± c (n) for j 5 2, 3, . . . ,m,j j

and the two impulse responses are the same only for j51.

g oProof. The first part of Proposition 3.1 holds trivially. Next, rewrite c (n) and c (n) asj j

g g o o
c (n) 5 A w , c (n) 5 A w ,j n j j n j

g 2(1 / 2) osuch thatw 5s oe and w 5Pe . Noticing thatj jj j j j

3For a further discussion of the generalised forecast error variance decompositions see Pesaran and Pesaran, 1997, Section
19.5.
4Proposition 3.1 also applies to the relationship between the generalized and the orthogonalised forecast error decomposi-
tions.
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1
]g 2 2w 5 s (s , s , . . . ,s )9, for j 5 1, 2, . . . ,m,j jj 1j 2j mj

o o o
w 5 ( p , p , . . . , p )9, . . . ,w 5 (0, . . . ,0, p , . . . , p )9, . . . ,w 5 (0, . . . ,0, p )9,1 11 21 m1 j jj mj m mm

it is then easily seen that
g o g o

w ± w and c ± c for j 5 2, . . . ,m.j j j j

When j51,
1
]g 2 2w 5 s (s , s , . . . ,s )9. (11)1 11 11 21 m1

Using the equality PP95o, we have

2 2p 5 s , (s , s , . . . ,s )9 5 ( p , p p , . . . , p p )9. (12)11 11 11 21 m1 11 11 21 11 m1

g o g oUsing (12) in (11), we obtain w 5w and c 5c . j1 1 1 1

4. The generalized impulse response analysis in a cointegrated VAR model

In this section we extend the generalized impulse analysis to a cointegrated VAR model, also
known as a vector error correction (VEC) model. The econometric issues surrounding the analysis of
VEC model are discussed, for example, in Johansen (1995) and Pesaran et al. (1997). Here we
provide only a brief outline of the estimation issues, focusing attention on the generalized impulse
response functions.

To deal with unit roots and cointegration, we replace Assumption 2.2 by
p

iAssumption 4.1. The roots of uI 2 o F z u50 satisfy uzu.1 or z51.m i
i51

In this case (1) can be transformed into the VEC form:

p21

Dx 5 2 Px 1O G Dx 1 PLw 1 ´ , t 5 1, 2, . . . ,T, (13)t t21 i t2i t t
i51

p p

where P 5I 2 o F , G 52 o F for i51, . . . , p21, and L is an m3g matrix of unknownm i i j
i51 j5i11

coefficients. The relationships between parameters in (1) and (13) can also be rewritten as

F 5 I 2 P 1 G , F 5 G 2 G for i 5 2, . . . , p 2 1, F 5 2 G . (14)1 m 1 i i i21 p p21

Suppose that the system (13) is cointegrated in the sense that there exists an m3r matrix b such that
the r31 vector z 5b9x is stationary, where 1#r,m. The cointegrating restrictions can be formallyt t

expressed as

P 5 ab9, (15)

where a and b are m3r matrices of full rank r; that is, rank(P )5r. Finally, to ensure that the
underlying variables in x are at most I(1), we assume:t
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p21

9Assumption 4.2 a Gb has full rank, where G 5I 2 o G , and a and b are m3(m2r)' ' m i ' '
i5i

matrices of full column rank such that a9a 50 and b9b 50.' '

Under Assumptions 4.1 and 4.2, and (15), x will be first-difference stationary, and therefore, Dxt t

can be written as the infinite moving average representation (see, for example, Johansen (1995),
(Chapter 4)),

` `

Dx 5O C ´ 1O C PLw , t 5 1, 2, . . . ,T. (16)t i t2i i t2i
i50 i50

Applying the definition of the scaled generalized impulse responses (see (10)) to (16), we obtain

1
]g 2 2c (n) 5 s C Se , n 5 0, 1, 2, . . . , (17)Dx, j jj n j

which measures the effect of the shock to the jth equation in (16) on Dx . We also obtain thet1n

generalized impulse response functions of x with respect to a shock in the jth equation byt1n

1
]g 2 2c (n) 5 s B Se , n 5 0, 1, 2, . . . , (18)x, j jj n j

n

where B 5 o C is the ‘cumulative effect’ matrix with B 5C 5I .n j 0 0 m `j50
A necessary and sufficient condition for cointegration is given by b9C(1)50, where C(1)5 o Ci

i50
with rank [C(1)]5m2r [see Engle and Granger (1987)]. Then, the cointegrating relations can be
written as

` `

z 5 b9x 5O b9B ´ 1O b9B PLw . (19)t t i t2i i t2i
i50 i50

Hence, the generalized impulse response functions of z with respect to shock in the jth equation ist

given by
1
]g 2 2c (n) 5 s b9B Se , n 5 0, 1, 2, . . . . (20)z, j jj n j

Similarly, the orthogonalized impulse response functions of x and z with respect to a variable-t t

specific shock in the jth equation are given by

o o
c (n) 5 B Pe , c (n) 5 b9B Pe , n 5 0, 1, 2, . . . . (21)x, j n j z, j n j

In the present case it is important to note that the parametric restrictions implied by the deficiency in
the rank of P is taken into account, and therefore, the effects of shocks on the individual variables

5will be persistent, but these effects eventually vanish on the cointegrating relations, z 5b9x .t t

The matrices hB , n51, 2, . . . j can be computed from the underlying VAR coefficient matrices hF ,n i

i51, . . . , pj using the following recursive relations [see Pesaran and Shin (1996)]:

B 5 F B 1 F B 1 ? ? ? 1 F B , n 5 1, 2, . . . , (22)n 1 n21 2 n22 p n2p

5Notice that B 5C(1), and therefore b9B 50.` `
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where B 5I and B 50 for n,0.0 m n
gThe ML estimators obtained from (13) can be used to obtain the ML estimators of c (n) andx, j

g gg 6ˆ ˆc (n), which we denote by c (n) and c (n), respectively. Moreover, as shown in Appendix A, forz, j x, j z, j

n50, 1, 2, . . . ,

g] agŒ ˆT [c (n) 2 c (n)] |Nh0, S (n, j)j, (23)x, j x, j x

g] agŒ ˆT [c (n) 2 c (n)] |Nh0, S (n, j)j, (24)z, j z, j z

a
where ‘ |’ denotes asymptotic equality in distribution, and o (n, j) and o (n, j) are given respectivelyx z

by (A.15) and (A.17) in Appendix A.

5. An empirical illustration

In this section we illustrate our approach by estimating impulse response functions for the trivariate
VAR model in investment, consumption and output previously analyzed by King et al. (1991)
(KPSW) on the U.S. quarterly data. All three variables are in logarithms, measured on a per capita
basis, and denoted by i, c, and y.

We first analyze the unrestricted VAR(4) model,

4

x 5 a 1 a t 1O F x 1 ´ , (5.1)t 0 1 j t2j t
j51

where the ordering of the variables in x is chosen to be (i, c, y), a and a are 331 vectors of0 1

coefficients, F , j 51, 2, 3, 4, are 333 matrices of coefficients, and t is running from 1948(1) toj

1988(4).
After estimating the parameters in (5.1) consistently by OLS, we turn to estimate the orthogonal-

ized and the generalized impulse response functions with respect to one standard error shock to the
7output equation using (7) and (10), respectively. The results for the generalized and orthogonalized

impulse responses are presented in Figs. 1 and 2, respectively. Fig. 1 shows that the output shocks
have larger and more persistent effects on investment, followed by output then consumption. After
over-shooting, the effects on output and consumption tend to die out after about 7 quarters. But, the
responses of investment to the output shock shows a cyclical pattern over a relatively protracted
period of time; its impact response is 1.5%, rising to 2.5% in the 2nd quarter, then declining sharply to
21% around the 10th quarter, and finally gradually tending towards 0.

A markedly different picture emerges from Fig. 2, which displays the orthogonalized impulse
responses with output shock having much larger impacts on itself than on investment in the first few
quarters after the shock. Notice also that by construction the impact effects of orthogonalized output

6 ¨For more details see Lutkepohl and Reimers (1992) and Pesaran and Shin (1996).
7Detailed estimation results are available upon request. All the computations reported in this section have been carried out
using Microfit 4.0 [Pesaran and Pesaran (1997)].
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Fig. 1. Generalised impulse responses to one standard error shock in the output equation.

shocks on investment and consumption are zero. In general, the shape and the size of the two impulse
8responses are quite different.

Next, following KPSW, we assume that all the three variables, are I(1), and so analyze the three
variables in the context of a cointegrated VAR(4) model with unrestricted intercepts and restricted-

9trend coefficients,

3

Dx 5 a 1 a t 2 Px 1O G Dx 1 ´ , t 5 1948(1) 2 1988(4), (5.2)t 0 1 t21 j t2j t
j51

where a 5Pg and g being 331 vector of unknown coefficients.1

KPSW identify two cointegrating relations between the three variables, namely, i2y and c2y,
which are also referred to as ‘great ratios’. With the two cointegrating relations one needs four
restrictions (two per each cointegrating vector) to exactly identify them. Suppose that the four
exactly-identifying restrictions are given by

Fig. 2. Orthogonalised impulse responses to one standard error shock in the output equation.

8Clearly, the two impulse responses would have coincided if output was specified to be the first variable in the VAR. See
Proposition 3.1.
9For more details on the choice of intercepts and trends in cointegrated VAR models see Pesaran and Pesaran (1997) and
Pesaran et al. (1997).
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Fig. 3. Generalised impulse responses to one standard error shock in the error correction equation for output.

i b b 1 011 12

c b b 0 121 22H : 5 .E y b b * *31 323 4 3 4
trend b b * *41 42

Under H , the ML estimates of the two cointegrating vectors obtained from (5.2) subject to theE

cointegrating restrictions, namely, rank(P )52, are as follows (see Pesaran and Shin (1997)):

1 0
0 1

b̂ 5 , LL 5 1552.1,2 1.028 (.27) 2 1.046 (.13)3 4
.00017 (.0011) 2 .00008 (.00054)

where the asymptotic standard errors are given in brackets, and LL is the maximized log-likelihood.
Imposition of the full set of restrictions implied by two great ratios yields the maximized log-
likelihood of 1548.8, resulting in the log-likelihood ratio statistic of 6.74, which is below the 95%

2critical value of the x (4) distribution. Thus the ‘great-ratio’ hypothesis cannot be rejected, a finding
which is in accordance with KPSW’s conclusion.

Based on these two cointegrating relations, the generalized and orthogonalized impulse responses
with respect to the output shocks can be estimated by (18), and (21), using the ML estimates. The
time profiles of these impulse responses are displayed in Figs. 3 and 4, and give a very similar pattern
to those obtained in the case of the unrestricted VAR model. A comparison of these figures further
illustrates substantial differences that could exist between the two impulse responses.
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Fig. 4. Orthogonalised impulse responses to one standard error shock in the error correction equation for output.

Appendix A

Proofs of (23) and (24)

ˆ ˆ ˆˆLet G, a, b and S be the maximum likelihood estimators of G, a, b and S in the VEC model
¨(13). Using the results in Lutkepohl and Reimers (1992) and Pesaran and Shin (1996), then the

10following asymptotic results (as T →`) can be established:

] aˆŒ ˆˆTvech[G, 2 ab ] 2 [G, 2 ab]j |N(0, S ), (A.1)CO

] aˆŒTvec(S 2 S ) |Nh0, 2P (S ^ S )j, (A.2)D

where

21S 5 (FS F9) ^ S, (A.3)CO

21 21 9I 0 T YY9 T YX bm( p21) 21F 5 , S 5Plim ,F G F G21 21
T →` 90 b T b9X Y T b9X X b21 21 21

9 9Y 5[Dx , . . . ,Dx ]9, Y5[Y , . . . ,Y ], X 5[x , x , . . . ,x ], G 5[G , . . . ,G ], and P 5t t21 t2p11 1 T 21 0 1 T21 1 p21 D
21 29 9D (D D ) D is the projection matrix based on the duplication matrix, D .Defining an m p31m m m m m

vector, f 5vec(F , F , . . . ,F ), and using (A.1), (A.2), (14) and (22), it is straightforward to show1 2 p

that

] aŒ ˆTvec(f 2 f) |Nh0, S j, (A.4)f

] aŒ ˆ 9Tvec(B 2 B ) |Nh0, S 5 K S K j, n 5 1, 2, . . . , (A.5)n n B n f nn

10In the context of the VEC model (13), the ML estimators of the short-run parameters (G and a) and of the long-run
]Œparameters (b ) are T-consistent and T-consistent, respectively. For a proof see, for example, Pesaran and Shin (1997).
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where

n21
21 n212iS 5 (W9FS F9W ) ^ S, K 5O J(F 9) ^ B , (A.6)f n i

i50

I 2 I 0 ? ? ? 0 0 F F F ? ? ? F Fm m 1 2 3 p21 p

0 I 2 I ? ? ? 0 0 I 0 0 ? ? ? 0 0   m m m

0 0 I ? ? ? 0 0 0 I 0 ? ? ? 0 0m mW 5 , F 5
mp3mp mp3mp : : : : : :   : : : : : : 

0 0 0 ? ? ? I 2 I 0 0 0 ? ? ? 0 0m m

0 0 0 ? ? ? 0 I 0 0 0 ? ? ? I 0   m m

and J5(I , 0, . . . ,0) is an m3mp matrix.m

Based on these results, we now derive the asymptotic distribution of the estimator of generalized
impulse responses. First, consider

1 1
] ]ˆ ˆˆ 2 29 9B Se (e Se ) 2 B Se (e Se ) Ng n j j j n j j j Ggˆ ]]]]]]]]]] ]c (n) 2 c (n) 5 ; , (A.7)1 1x, j x, j ] ] Dˆ 2 2 G9 9(e Se ) (e Se )j j j j

ˆ9 ˆ 9where e is an m31 selection vector, s 5e Se and s 5 e Se . Notice also thatj jj j j jj j j

1 1 1
] ] ]ˆ ˆˆ 2 2 29 9 9N 5 (B S 2 B S )e (e Se ) 1 B Se [(e Se ) 2 (e Se ) ], (A.8)G n n j j j n j j j j j

ˆ ˆ ˆˆ ˆ ˆB S 2 B S 5 (B 2 B )(S 2 S ) 1 B (S 2 S ) 1 (B 2 B )S, (A.9)n n n n n n n

and by the Taylor series expansion

1 1 11] ] ]2ˆ ˆ2 2 29 9 ] 9 9 9(e Se ) 5 (e Se ) 1 (e Se ) (e ^ e ) vec(S 2 S ) 1 R, (A.10)j j j j j j j j2

where R is a scalar remainder term which in view of the consistency of the ML estimators can be
shown to be of o (1) order. Using (A.9) and (A.10) in (A.8), we havep

1
]ˆ ˆˆ ˆ 29N 5 [(B 2 B )(S 2 S ) 1 B (S 2 S ) 1 (B 2 B )S ]e (e Se )G n n n n n j j j

11 ]2 ˆ2F] 9 9 9 G2 B Se (e Se ) (e ^ e ) vec(S 2 S ) 1 R , (A.11)n j j j j j2

and also

1 ˆ9 ] 9 9D 5 (e Se ) 1 (e ^ e ) vec(S 2 S ) 1 R* 5 s 1 o (1), (A.12)G j j j j jj p2
]Œwhere R* is another scalar remainder term of o (1) order. Multiplying (A.11) by T and vectorizingp

the result,
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1] ] ] ]ˆŒ Œ ˆ Œ 29 9TN 5 [(e S ^ I ) Tvec(B 2 B ) 1 (e ^ B ) Tvec(S 2 S )]sG j m n n j n jj

1 ]g ˆŒ] 9 92 c (n)(e ^ e ) Tvec(S 2 S ) 1 o (1). (A.13)x, j j j p2
]ŒTherefore, multiplying (A.7) by T and using (A.12) and (A.13), we have

g] gŒ ˆT [c (n) 2 c (n)] 5x, j x, j

11 ]2 g ]2F 9 9 ] 9 9 G(e S ^ I ), (e ^ B ) 2 s c (n)(e ^ e ) Œ ˆj m j n jj x, j j j Tvec(B 2 B )2 n n
]]]]]]]]]]]]]]] 1 o (1). (A.14)] F ] G ps ˆŒjj Tvec(S 2 S )œ

] ]ˆŒ Œ ˆNotice that the asymptotic distributions of T(S 2 S ) and T(B 2 B ) are independent butn n

normally distributed. Then, using (A.2) and (A.5) we obtain (23), and S (n, j) is given byx

1 x x x x
] 9 9S (n, j) 5 hV S V 1V [2P (S ^ S )]V j, (A.15)x 1n B 1n 2n D 2nnsjj

where

11 ]x x 2 g29 9 ] 9 9V 5 e S ^ I , V 5 (e ^ B ) 2 s c (n)(e ^ e ).1n j m 2n j n jj x, j j j2

Similarly, we obtain

g] gŒ ˆT [c (n) 2 c (n)] 5z, j z, j

11 ]2 g ]2F 9 9 ] 9 9 G(e S ^ b9), (e ^ b9B ) 2 s c (n)(e ^ e ) Œ ˆj j n jj z, j j j Tvec(B 2 B )2 n n
]]]]]]]]]]]]]]]] 1 o (1). (A.16)] F ] G ps ˆŒjj Tvec(S 2 S )œ

and

1 z z z z
] 9 9S (n, j) 5 hV S V 1V [2P (S ^ S )]V j, (A.17)z 1n B 1n 2n D 2nnsjj

where

11 ]z z 2 g29 9 ] 9 9V 5 e S ^ b9, V 5 (e ^ b9B ) 2 s c (n)(e ^ e ).1n j 2n j n jj z, j j j2

This establishes (24). Notice that (A.16) is asymptotically valid irrespective of whether we use the
ˆtrue value of b or its T-consistent estimator, b. (See Corollary 1 in Pesaran and Shin (1996)).
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