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ABSTRACT
We discuss dynamic factor modeling of financial time series using
a latent threshold approach to factor volatility. This approach models
time-varying patterns of occurrence of zero elements in factor loadings
matrices, providing adaptation to changing relationships over time and
dynamic model selection. We summarize Bayesian methods for model
fitting and discuss analyses of several FX, commodities, and stock
price index time series. Empirical results show that the latent threshold
approach can define interpretable, data-driven, dynamic sparsity,
leading to reduced estimation uncertainties, improved predictions,
and portfolio performance in increasingly high-dimensional dynamic
factor models. ( JEL: C11, C53, C58)

KEYWORDS: Bayesian forecasting, latent threshold dynamic models, multi-
variate stochastic volatility, portfolio allocation, sparse time-varying loadings,
time-varying variable selection

In time series portfolio analysis as in other areas of multivariate dynamic modeling,
the increasing dimension of models drives a need for refined prior: model
structuring for parsimony in the face of increasingly high-dimensional parameters.
In dynamic settings, time-varying model parameter processes may take practically
non-negligible values for some epochs, but be effectively zero and practically
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irrelevant at other times. Recently developed Bayesian sparsity modeling approaches
such as graphical models (e.g., Carvalho and West 2007; Wang and West 2009; Wang
2010) and sparse factor models (e.g., West 2003; Carvalho et al. 2008; Yoshida and
West 2010; Carvalho, Lopes, and Aguilar 2011) address global sparsity—permitting
data-based shrinkage of subsets of model parameters to zero using Bayesian
sparsity priors. However, such approaches have not been able to provide a rigorous
and satisfactory strategy for models and relationships exhibiting time-varying
sparsity, where dynamic parameters may be zero for periods of time but non-zero
elsewhere. In a recent paper, we introduced a novel and general approach based
on latent threshold modeling, and demonstrated its efficacy in dynamic regression
variable selection as well as time-varying vector autoregressions (Nakajima and
West 2010). The current paper extends this to a class of multivariate dynamic
factor and regression models for financial time series and evaluates the resulting
inferences, predictions, and portfolio decisions against standard approaches in
empirical studies.

Dynamic factor models have become standard tools for multivariate time
series econometrics and for multivariate stochastic volatility in particular (Aguilar
et al. 1999; Pitt and Shephard 1999; Aguilar and West 2000). We adopt a general
framework that builds on these prior approaches and extends to time-varying
factor loadings matrices (Lopes and Carvalho 2007; Carvalho, Lopes, and Aguilar
2011) as well as integrating short-term dependence structure into latent factor
processes. Overlaying the resulting general class of dynamic factor models are the
new latent threshold mechanisms that define the ability for time-varying factor
loadings to shrink to zero dynamically—i.e., dynamic sparsity models for loadings
as well as possibly for other model components including dynamic regression
coefficients.

Section 1 outlines the class of dynamic factor and regression models, defines the
new approach to dynamic sparsity using latent threshold modeling, and discusses
Bayesian analysis and computation for model fitting. A first example in Sections 2
and 3 uses FX data similar to data sets that have been previously analyzed using
latent factor volatility models for portfolio studies; we give extensive and detailed
evaluation of sets of models including comparisons to the use of standard models,
and discuss aspects of model diagnostics. In Section 4, we develop a dynamic factor
and regression model analysis of an extended FX and commodity price time series,
further demonstrating the practical utility of the approach in short-term forecasting
and portfolio decisions, and with additional model comparisons. Section 5 presents
a further study of a 40-dimensional series of FX and stock price indices that, in part,
anticipates future applications involving higher-dimensional time series. Section 6
provides some summary comments.

Some notation: We use the distributional notation y∼N(a,A), d∼U(a,b), p∼B(a,b),
v∼G(a,b), for the normal, uniform, beta, and gamma distributions, respectively.
We also use s : t to denote s,s+1,...,t when s< t, for succinct subscripting; e.g., y1:T
denotes {y1,...,yT}.
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1 DYNAMIC FACTOR AND REGRESSION MODELS

1.1 General Model Form

The class of models for a m×1 vector response time series yt, (t=1,2,...) is

yt =ct +Atxt +Btf t +νt, νt ∼N(0,�t) (1)

f t =Gtf t−1 +εt, εt ∼N(0,�t) (2)

with the following ingredients:

• ct is a local trend term, or local mean;
• xt is a q×1 vector of covariates known at time t with an associated m×q time-

dependent parameter matrix At;
• f t is a k×1 vector of latent factors at time t, evolving according to a Vector

Autoregression, VAR(1) model with possibly time-varying AR coefficient
matrix Gt and also possibly time-varying innovations variance matrix �t (both
k×k);

• Bt is the time-varying loadings matrix of the dynamic latent factor component
of the model;

• νt = (ν1t,...,νmt)′ is a residual term with a diagonal residual, time-varying
volatility matrix �t;

• the νt and εs = (ε1t,...,εkt)′ sequences are independent and mutually indepen-
dent.

Following prior work, factor model identification is imposed by constraining Bt to
have an upper right triangle of zeros and upper diagonal elements of unity (Aguilar
and West, 2000; Lopes and West, 2004).

There are many possible choices of submodels for the time-varying structures
of ct, At, Bt, �t, and �t. We treat {At,Bt} using the new latent threshold
approach, this being the primary focus of the current work; this is described in
Section 1.2 followed by choices of model forms for the remaining components in
Section 1.3.

This model class represents a generalization of the standard factor models in
a number of respects relevant to financial time series analysis. The elements of
the factor loadings matrix (as well as regression parameter matrix) are allowed
to change over time (Lopes and Carvalho 2007) while being subject to our novel
latent thresholding mechanism to shrink them to zero when data suggest they
are irrelevant. Further, the latent factors follow an autoregressive process, so
providing opportunity for improvements in short-term forecasting of underlying
time-varying common movements in the multiple time series. Adding volatility to
this latter component is one further extension of some practical value, discussed
below.
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1.2 Dynamic Latent Threshold Model Components

We base development on an underlying AR(1) process structure for each of the free
elements of Bt as well as for all univariate entries in At. For the factor loadings,
this is related to process models adopted for dynamic factor loadings in Lopes
and Carvalho (2007). This basic idea is now adapted using the latent threshold
mechanism of Nakajima and West (2010), as follows.

Dynamic regression parameter processes: For At we adopt the latent threshold
model of Nakajima and West (2010) directly. Write ait for the i-th element of the
mq×1 vector at ≡vec(At). The model assumes the ait independently drawn from
processes as follows:

ait = αitsait with sait = I(|αit|≥dai), i=1 :mq, (3)

where αit is a latent AR(1) process

αit = μαi +φαi(αi,t−1 −μαi)+ηαit, ηαit ∼N(0,vαi), (4)

with |φαi|<1 for each i=1 :mq.

Dynamic factor loadings processes: We use the same form of construction for the
free parameter processes in Bt, i.e., those elements below the upper diagonal of the
m×k matrix Bt (n.b. m>k).Write bt for the column stack of those free elements, so
that bt is a p×1 vector where p=mk−k(k+1)/2 with univariate elements bit, i=1 :p.
The model assumes the bit independently drawn from processes as follows:

bit = βitsbit with sbit = I(|βit|≥dbi), i=1 :p, (5)

where βit is a latent AR(1) process

βit = μβi +φβi(βi,t−1 −μβi)+ηβit, ηβit ∼N(0,vβi), (6)

with |φβi|<1 for each i=1 :p.

The key idea of the latent threshold structure is that the value of each of the
dynamic regression and time-varying loading parameters is shrunk to zero when its
absolute value falls below a coefficient-specific threshold. On the factor component,
the relevance of each factor to the response is time-varying; a factor plays a role
in predicting the response only when the corresponding βit is “large enough.”
For each time series response variable, the factor may have a non-zero loading in
some time periods but zero in others, depending on the data and context. This
mechanism leads to dynamic model uncertainty in the factor loading matrix by
neatly embodying time-varying sparsity/shrinkage and parameter reduction.
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1.3 Subsidiary Model Components

Local mean: The time-varying intercept, or local mean ct = (c1t,...,cmt)′ evolves
based on stationary, independent AR(1) models

cit = μci +φci(ci,t−1 −μci)+ηcit, ηcit ∼N(0,vci), (7)

with |φci|<1 for each i=1 :m.
Residual volatility: With �t =diag(σ 2

1t,...,σ
2
mt), we adopt standard stochastic

volatility process models (e.g., Jacquier, Polson, and Rossi 1994; Kim, Shephard,
and Chib 1998; Aguilar and West 2000; Omori et al. 2007; Prado and West 2010,
chap. 7) as follows. The log volatilities δit = logσ 2

it follow independent, stationary
AR(1) models

δit = μδi +φδi(δi,t−1 −μδi)+ηδit, ηδit ∼N(0,vδi), (8)

with |φδi|<1 for each i=1 :m.
Factor evolution: For the parameters of the factor evolution model in Equation (2)
our empirical examples constrain to a constant and diagonal autoregressive
parameter matrix Gt ≡G=diag(γ1,...,γk) for all t. We do generally expect—and
observe the need for—dynamics in the volatility of factor processes, so take a
volatility model for the innovations variance matrix �t similar to that for �t. That
is, �t =diag(ψ2

1t,...,ψ
2
kt) and, defining λit = logψ2

it for i=1 :k, we have independent,
stationary AR(1) models

λit = μλi +φλi(λi,t−1 −μλi)+ηλit, ηλit ∼N(0,vλi), (9)

with |φλi|<1 for each i=1 :k.

The resulting model class is sufficient for our current purposes but can
clearly be expanded with more elaborate submodels if context demands in new
applications.

1.4 Bayesian Analysis and Computation

We refer to the framework here as a Latent Threshold Dynamic Factor Model (LTDFM).
Bayesian analysis uses Markov chain Monte Carlo (MCMC) methods, building on
nowadays standard simulation methods in a set of computational “modules.” These
include conditional samplers for latent factor models (Aguilar and West 2000; Lopes
and West 2004) and for univariate stochastic volatility models (Shephard and Pitt
1997; Kim, Shephard, and Chib 1998; Watanabe and Omori 2004; Omori et al. 2007).
These are coupled with additional, direct conditional samplers using the forward
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filtering, backward sampling strategy for state space dynamic models (e.g., Prado
and West 2010) and a set of univariate, conditional Metropolis–Hastings samplers.
One key computational novelty is the extension of a Metropolis Hastings algorithm
of Nakajima and West (2010) required for the latent threshold component of the
LTDFM.

In the context of observing data {y1:T,x1:T} over a time interval 1 :T, the full set
of latent process state parameters and model hyper-parameters for inclusion in the
posterior analysis are as follows:

• The local trend and latent factor process states c0:T and f 0:T including their
uncertain initial values at t=0;

• The log volatility processes δ1:m,1:T and λ1:k,1:T ;
• Hyper-parameters defining each of the component univariate AR(1) submod-

els, namely

– γ1:k, the AR(1) coefficients of the factor evolution matrix Gt ≡G=diag(γ1:k),
– θ c ≡{μci,φci,vci; i=1 :m},
– θα≡{μαi,φαi,vβi; i=1 :mq},
– θβ≡{μβi,φβi,vβi; i=1 :p},
– θ δ≡{μδi,φδi,vδi; i=1 :m},
– θλ≡{μλi,φλi,vλi; i=1 :k};

• The dynamic regression and factor loading parameter process states αi,0:T,
(i=1 :mq), and βj,0:T, (j=1 :p), including their values at t=0;

• d={dai, i=1 :mq; dbj, j=1 :p}, the sets of thresholds in Equation (3) and (5).

The key analysis components for each of the sets of parameters and states are as
follows. In each, we simply note the states or parameters being sampled, implicitly
conditional on all other states and parameters if not explicitly qualified.

Trend and latent factor process states c0:T and f 0:T : Conditional on model hyper-
parameters, volatility process states and the data, the LTDFM of Equation (1) and
(2) reduces to a conditionally linear, Gaussian dynamic model for these states.
Resampling the full sets of states is then easily obtained by a direct application of
the standard forward filtering, backward sampling (FFBS) algorithm (e.g., Prado
and West 2010). Importantly, this is an efficient algorithm that regenerates full
trajectories of these latent states over 0 :T at each iterate of the overall MCMC.
These new values are then conditioned upon for resampling of other components.

Log volatility processes: We sample the conditional posteriors for each of the
latent log volatility processes δi,1:T, (i=1 :m), and λj,1:T, (j=1 :k) using the standard
MCMC technique for univariate stochastic volatility models (Shephard and Pitt
1997; Kim, Shephard, and Chib 1998; Watanabe and Omori 2004; Omori et al.
2007). Across i,j, these processes are conditionally independent in the posteriors
given in all the other model quantities, so this applies in parallel defining efficient
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resampling of full trajectories at each stage of the overall iterative MCMC. Given
values of these volatility trajectories, the diagonal volatility matrices of the LTDFM
are instantiated directly, viz �t =diag(σ 2

1t,...,σ
2
mt) where each σ 2

it =exp(δit), and
�t =diag(ψ2

1t,...,ψ
2
kt) where each ψ2

it =exp(λit).

AR hyper-parameters G=diag(γ1,...,γk): Assume independent priors for the γi
using traditional forms—either truncated normal or shifted beta priors to constrain
to the stationary range. We then sample the conditional posteriors either directly
or via Metropolis–Hastings accept/reject steps.

AR hyper-parameters θ∗: For each ∗∈{c,α,β,δ,λ},we assume prior independence
across ∗ and across i for each ∗, with traditional forms of priors for the AR
model parameters (μ∗i,φ∗i,v∗i). That is, we use normal or log-gamma priors for
μ∗, truncated normal or shifted beta priors for φ∗ and inverse gamma priors for
v∗. Conditional posteriors can be sampled directly or via Metropolis-Hastings
accept/reject steps.

Latent thresholded dynamic regression and factor loadings: Sampling conditional
posteriors of all elements of the αi,0:T, (i=1 :mq), and βj,0:T, (j=1 :p), is an extension
to the LTDFM of the algorithm introduced in Nakajima and West (2010). We
note details for the factor loadings matrix process only here, as that for the
dynamic regression parameters is essentially the same. Recall that bt is the p×1
vector representing the column stack of the free elements Bt; denote by βt
the corresponding vector of latent AR(1) processes underlying bt as defined by
Equation (5). At each stage of the overall MCMC, new values are sampled by
sequencing through sets of conditional distributions for each βt given β−t =β0:T\βt
and all other parameters. In this Metropolis-within-Gibbs sampling strategy,
proposed vectors βt are drawn trivially from the underlying non-threshold model
obtained by setting each sbit =1, i.e., assuming no sparsity in the loadings matrix
at that time t as a Metropolis proposal. Details of the resulting accept/reject
probability computation then follow as in dynamic regression applications detailed
in Section 2.3 of Nakajima and West (2010). Each MCMC iterate sequences through
this process over t=0 :T to resample the entire sequence of βt vectors. Given these
trajectories and threshold parameters d, the indicators sbit are instantiated, so
directly generating values of the full sequence of factor loadings matrices B0:T .
The same strategy then also applies to resample A0:T, as already mentioned.

Threshold parameters d: Again following Nakajima and West (2010), we adopt
priors for the thresholds that assume the d∗i to be independently uniform, for each
of ∗∈{a,b} and all i.We detail this for the thresholds of the Bt model, with those of
the At model being the same but for notation. Specifically, dbj ∼U(0,|μβj|+Ku1/2

βj )

where uβj =vβj/(1−φ2
βj) is the variance of the stationary marginal distribution of

the univariate AR(1) process for βjt. For K =3 or so as adopted and argued by
Nakajima and West (2010), these priors cover the range of the βjt as reflected in
their marginal distributions, uniformly supporting a relevant range of values of the
threshold. Sampling new thresholds from the implied conditional posteriors when
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given values of the Bt and all other model parameters uses a direct Metropolis–
Hastings independence chain step with candidate values for each dbj drawn from
the uniform prior.

1.5 Identification

Some comments on general questions of identification are in order. First, the overall
latent threshold model strategy inherently promotes data-based shrinkage—
completely to zero—of multiple factor loadings when it matters. Coupled with
the assumed upper triangular form of the factor loadings matrix Bt to “name”
and order factors according to the chosen first k time series variables, the results
are inferences on, typically, quite sparse structures. The triangular form ensures
mathematical identification, in terms of lack of an ability to “rotate” factors coupled
with a restricted number of free elements in Bt (Aguilar and West 2000; Lopes and
West 2004). Thresholding then typically reduces the number of non-zero elements
more dramatically; in this sense, the model is automatically self-identifying.

One specific additional consideration is the use of models in which both factor
processes and factor loadings are time-varying, and whether this introduces the
potential for new identification questions. There are two points to note. First,
again, thresholding matters: a thresholded value of a factor loading wipes out
the contribution of the factor itself over the period of time it is below threshold;
so the actual values of the underlying latent factor process are irrelevant over that
period. Second, and most importantly, careful specification of informative priors
over the parameters of the time series models for the factor loadings—the latent
AR(1) process models of Equation (6)—provides critical control over where the
resulting posteriors place mass. Models with rather vague priors that would allow
for very widely fluctuating patterns of change over time in the factor loadings are
irrelevant and dangerous, as they could engender models with wild variation in
loadings and relatively insignificant factor processes themselves, distort inferences
and certainly lead to weak identification problems. The same general comment
applies to all hyper-parameters, of course, but is most particularly key in connection
with the factor loadings model components. In reflection of this, our priors favor
highly persistent stationary AR(1) processes for βit, strongly limiting the global
fluctuations in loadings relative to potential fluctuation in the factors. This is
attained with priors for theφβi of Equation (6) that concentrate close to one, and with
priors for the innovations variances vβi of that equation that strongly favor small
values, again in the context of expected ranges of variation in the factor processes
as specified in corresponding priors for their hyper-parameters.

Across our examples here, and a range of additional empirical studies, we
have observed posterior inferences on factors and loadings that are evidently
interpretable, and supporting the notion of identified models. Monitoring MCMC
streams has not, in any of our examples reported, raised any concerns about the
MCMC switching between different regions in the space of factor loadings and
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Table 1 International currencies relative to the
U.S. dollar in exchange rate data

1 GBP British Pound Sterling
2 EUR Euro
3 JPY Japanese Yen
4 CAD Canadian Dollar
5 AUD Australian Dollar
6 CHF Swiss Franc

factor values, nor of steady “drifts,” either of which could suggest identification
issues if encountered. Again, these analyses are based on models with carefully
evaluated informative priors that, in part, exert control to rule out such potential
problems.

2 A STUDY OF EXCHANGE RATE RETURNS

The first study applies the LTDFM to a series of daily foreign exchange (FX) rate
returns. Our focus here is particularly on how the model, data match engenders
shrinkage to zero of time-varying factor loadings, coupled with the follow-on
implications for the dynamic relationships underlying the FX series. We note the
connections with previous work on FX time series using factor models (Aguilar
and West 2000; Lopes and West 2004; Lopes and Carvalho 2007).

2.1 Data and Model Setup

The data are m=6 daily international currency exchange rates relative to U.S. dollar
over a time period of 980 business days beginning in January 2006 and ending
in December 2009. The returns are computed as yit =100(pit/pi,t−1 −1), where pit
denotes the daily closing spot rate. The series are listed in Table 1; the exchange
rates and returns are plotted in Figure 1. The most striking feature in these sample
periods is a quite volatile and turbulent movement triggered by the financial crisis
around 2008; there are some superficial correlated flows and shifts among the series.
Initial exploratory analysis using the univariate stochastic volatility fit to each series
separately is summarized in Figure 2. There exist marked region-specific patterns.
The peaks of stochastic volatility seem to coincide in 2008, but there exist several
spikes common only to two or three currencies. From these exploratory analysis, we
chose a LTDFM specification in which the currencies are ordered in the yt vectors
as in Table 1.

Our analysis uses a special case of the general LTDFM presented above in
which there are no covariates, i.e., xt =0,At =0 for all t. The following priors are
used in our first example: 1/vci ∼G(40,0.005); 1/vβi ∼G(40,0.02); 1/vδi ∼G(20,0.001);
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Figure 1 Daily (a) exchange rates and (b) returns.

(φ∗i +1)/2∼B(20,1.5) for each ∗∈{c,β,δ,λ}, and (γi +1)/2∼B(1,1). For each ∗∈{c,β}
we use priorsμ∗i ∼N(0,1) whereas for each ∗∈{δ,λ} we take exp(−μ∗i)∼G(3,0.03).
The MCMC analysis was run for a burn-in period of 20,000 samples prior to saving
the following MCMC sample of size J =100,000 for summary posterior inferences.
Computations were performed using custom code in Ox (Doornik 2006); the code
is available to interested readers.
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Figure 2 Estimated trajectories of univariate stochastic volatility (σit =exp(δit/2)) fit to each series
separately.

Determination of the number of factors k has been a challenging issue in the
literature (e.g., Lopes and West 2004). For the analysis here, we fit the LTDFM
to the FX data and repeated the analysis across models with different number of
factors k =1,2,3, or 4. We evaluated each of the resulting models by forecasting
over the final five business days using the first 930 observations, and repeated this
five-step ahead forecasting based on the first 930+5j observations for j=1,...,9,
to obtain the 50-day forecasts. Based on the root mean squared errors (RMSE) for
these out-of-sample forecasts, the LTDFM performs substantially better at k =3
factors; this suggests a fourth factor is redundant while three are required, and
we focus our analysis summaries on that of the model with k =3. We comment
further on this below, where we note some key aspects from the analysis of a model
with k =4.

2.2 Summaries of Posterior Inferences

Figure 3 displays posterior estimates of the latent time-varying factor loadings, as
well as the posterior probabilities of sbit =0 for the LTDFM model. The estimated
latent process exhibits considerable time variation for several loadings; this cannot
be captured by a constant-loading factor model. In particular, JPY-Factor1 and AUD-
Factor3 are estimated positive in 2006, but become negative after 2007, reflecting
a shift of correlated dynamics among the FX series. The trajectories of posterior
means of several loadings also evidently change over time. Time-varying sparsity
is observed for the loadings of JPY-Factor1, AUD-Factor3, and CHF-Factor3, with
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estimated values shrinking to zero for some time periods but not others, whereas
other loadings such as CAD-Factor2 and CHF-Factor3 are totally selected out over
the entire time-frame.

The interesting observation of the shrinkage pattern of JPY-Factor1 in 2008
implies that the JPY returns turned to be negatively correlated with Factor1. The
loadings on Factor1 are all positive in the currencies except JPY. In 2008, the
financial crisis led investors to reduce their size of U.S. dollar short position and
the currencies in our analysis except JPY depreciated against U.S. dollar, whereas
the JPY temporarily appreciated.

Figure 4 shows the proportion of variation of the time series explained by each
factor; the time variation in the contributions is evident. By construction, Factor1 is a
GBP-leading factor, although its explanatory ratio decreases from 2006 to 2009, and
there are a few downward spots in the crisis period, which indicates idiosyncratic
variation of the GBP. Factor2 is recognized as an European factor that mainly
explains the variation of EUR and CHF. The variation of JPY is of interest; Factor1
primarily explains its fluctuation in 2006, but later its role is shifted to Factor3,
namely a JPY-leading factor. Clear shrinkage of the contribution in JPY-Factor1,
CAD-Factor2, and CAD-Factor3 is detected by the LTDFM structure as observed
in Figure 3; this data-induced shrinkage eliminates unnecessary fluctuations in
what are negligible but non-zero values in time-varying loadings were we to use
a non-thresholded model, and leads to efficient discrimination and contextual
interpretation of the factors.

Figure 5 plots the posterior estimates of time trajectories of the factors and
their innovation volatilities. The trajectories and peak of the stochastic volatility
remarkably differ among the factors. The stochastic volatility of Factor1 has the
peak around September 2008 corresponding to the major crash of the market,
whereas that of Factor2 has its peak around December 2008, when EUR and CHF
returns exhibit relatively higher volatility in reaction to the U.S. Senate’s rejection
of the financial bailout for the automotive industry. The stochastic volatility of
Factor1 exhibits a steeper hike toward the peak and a more moderate diminishing
afterwards compared to that of Factor2. We also find that the posteriors for the AR(1)
γi parameters place substantial mass around zero, indicating lack of predictability in
the latent factor processes, i.e., that the factor contributions are effectively unrelated
over time, consistent with assumptions of factor volatility modeling of FX returns
in prior work.

Figure 6 graphs posterior means of series-specific stochastic volatility, σit =
exp(δit/2), that is, volatility elements excluding the common factors, exhibiting quite
a different picture from Figure 2. GBP has a unique hike of volatility in the second
half of 2008 and CHF has several spikes in 2008 and 2009, which are not explained
by the factors. Because most of the fluctuation in EUR returns are explained by
Factor1 and Factor2 as can be seen in Figure 4, the remaining series-specific shocks
are relatively smaller than the others as shown in Figure 6.

As mentioned above, we determined the number of factors as k =3 based on
out-of-sample, multi-day ahead forecasting performance. However, we also note
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Figure 3 Posterior means (solid) and 95% credible intervals (dotted) of time-varying factor
loadings. Posterior probabilities of sbit =0 are plotted below each trajectory.
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Figure 4 Time series trajectories of proportion of variances explained by factors.
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Figure 5 Left panels: posterior means of factors fit. Right panels: posterior means (solid) and 95%
credible intervals (dotted) of factor stochastic volatility ψit =exp(λit/2).
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Figure 6 Posterior means of series-specific stochastic volatility (σit =exp(δit/2)).
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Figure 7 Results of FX analysis in model with k =4 factors. Left panels: posterior means of factors
fit. Right panels: posterior means (solid) and 95% credible intervals (dotted) of factor stochastic
volatility ψit =exp(λit/2).

some aspects of analysis results using k =4 factors. As can be seen in Figure 7, the
estimated trajectory of Factor4 is clearly shrunk with significantly smaller stochastic
volatility than the other three relevant factors. Figure 8 shows results of time-
varying loadings and sparsity, indicating that the loadings of Factor4 are mostly
shrunk in the entire periods. This finding implies that the LTDFM structure can
facilitate data-driven model search and selection of factor models via shrinkage of
time-varying loadings.

Our experiences with various orderings of the FX series in yt vectors are that
the ordering reported here yields more reasonable factor estimates with plausible
econometric interpretations than other ordering. We continue with the model as
specified here in the following portfolio analysis.

3 PORTFOLIO ALLOCATION ANALYSIS

This section explores the forecasting performance of the LTDFM in the context of
dynamic portfolio allocations. This portfolio analysis follows previous Bayesian
model evaluation using sequential portfolio decisions (Quintana 1992; Putnum
and Quintana 1994; Quintana and Putnum 1996; Aguilar and West 2000; Carvalho
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Figure 8 Results of FX analysis in model with k =4 factors. Posterior means (solid) and 95% credible
intervals (dotted) of time-varying factor loadings. Posterior probabilities of sbit =0 are plotted below
each trajectory.

and West 2007; Carvalho, Lopes, and Aguilar 2011; Wang and West 2009). Our
main focus is the impact of the LTDFM structure on forecast accuracy relative to
standard dynamic factor models, considering how the dynamic sparsity/shrinkage
in time-varying factor loadings plays a relevant role in investment experiments. We
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compare six competing models by implementing sequential portfolio allocations
based on forecast means and variances of the FX series.

3.1 Portfolio Allocation Experiments

We reanalyze the FX time series restricting to only the first T =880 observations. The
remaining 100 business days are then used for forecasting, portfolio reallocations
and model comparisons. After observing the closing rates on the business day t−1
(≥T), the one-step ahead forecast mean vector and variance matrix of yt are denoted
by gt and Qt; the implied precision matrix is then Kt =Q−1

t .These are computed via
the MCMC based on draws from one-step ahead predictive posterior distributions
using the available data, y1:t−1. Investments are reallocated according to a vector of
portfolio weights wt optimized by a specific allocation rule, described below. The
realized portfolio return at time t is rt =w′

tyt. The portfolio is reallocated on each
business day based on one-step ahead forecasting computed via the MCMC given
updated data. We fix the total sum invested on each business day by restricting
w′

t1=1.
We use traditional Bayesian mean-variance optimization (Markowitz 1959)

subject to constraints. Given a scalar daily return target m, we optimize the portfolio
weights wt, by minimizing the one-step ahead variance of returns among the
restricted portfolios whose one-step ahead expectation is equal to m. Specifically,
at time t, we minimize an ex-ante portfolio variance w′

tQtwt, subject to w′
tgt =m,

and w′
t1=1. The solution is w(m)

t =Kt(atgt +bt1), where at =1′Kte, and bt =−g′
tKte,

where e= (1m−gt)/d, and d= (1′Kt1)(g′
tKtgt)−(1′Ktgt)

2. We also consider the
target-free minimum-variance portfolio given by w∗

t =Kt1/(1′Kt1). We implicitly
assume that we can freely reallocate the resources to arbitrary long or short positions
across the currencies without any transaction cost.

In addition to one-step ahead prediction, we also examine the same analysis
strategy but now focused on five-step ahead forecasting and portfolio revisions.
Every five business days, the posterior predictive distribution of five-step horizons,
(yt,yt+1,...,yt+4) is computed via MCMC based on the available data y1:t−1. This
experiment assumes a possible situation that investors allocate their resource every
business day based on weekly updated forecasts.

3.2 Model Evaluations and Comparisons

We consider the following three models from the class of LTDFMs:

• LM-AF: Local autoregressive means ct and autoregressive factors f t.

• LM-IF: Local autoregressive means ct and time-independent factors f t; i.e.,
G=O.
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Table 2 Cumulative returns (%) over 100 business days

LM-AF LM-IF CM-IF

NT LT NT LT NT LT

One-step ahead forecasts
Target return:
m=0.02 −1.08 1.25 1.18 3.11 −3.03 2.06
0.04 −2.20 1.52 −0.33 2.55 −4.85 1.61
0.06 −3.31 1.78 −1.85 1.99 −6.67 1.15
Target-free −1.42 2.11 −1.26 0.98 −1.12 −0.04

Five-step ahead forecasts
Target return:
m=0.02 −1.26 2.09 −1.54 0.95 −0.55 1.20
0.04 −0.96 1.88 −1.33 1.03 −3.12 0.82
0.06 −0.66 1.68 −1.12 1.11 −5.69 0.45
Target-free −0.98 0.52 −0.55 1.25 −0.53 0.50

• CM-IF: Constant levels ct ≡c and time-independent factors.

For each model of these three specifications, our study analyzed two variants:
the LT (latent threshold) and NT (non-threshold) versions, giving a total of six
competing models analyzed via the forecasting and portfolio strategy over the final
100 business days. For the CM-IF model, an additional prior is assumed: c∼N(0,I).
The other prior specifications and simulation size are as in the previous analysis and
detailed in Section 2.1. We assessed each model repeatedly using portfolios based
on a range of daily target returns of m=0.02, 0.04, and 0.06 percent, corresponding
to monthly (20 day) return of approximately 0.4, 0.8 and 1.2 percent, respectively.

Table 2 reports cumulative returns of the portfolios resulting from the
sequential investment over 100 business days. It is evident that the use of LT
structure remarkably dominates the NT models regardless of other aspects of model
specification or the portfolio allocation rules. Figure 9 displays the cumulative
returns across time periods from one-step ahead forecasting. LT models clearly
outperform NT models and their difference is larger in the mean-target strategy
of m=0.06% than in the target-free minimum-variance portfolio. A sudden loss
in the CM-IF-NT model in the late periods of the mean-target analysis indicates
weakness of the constant mean, independent factor model; it cannot fully react to a
rapid change of market circumstances. In contrast, it is remarkable that CM-IF-LT
model avoids such a significant drop due to reasonably flexible shrinkage in the
loadings matrix that also reduces uncertainty about the time-varying parameters,
resulting in reduced forecast variances as well as improved forecast performance
from short-term adaptability.

Additional insights into comparative performance come from examining levels
of portfolio risk. From one-step ahead forecasting using the LM-AF models,
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Figure 9 Cumulative returns over 100 business days based on one-step ahead forecasting for (a)
portfolio under the target returns of 0.06% and (b) target-free minimum-variance portfolio.

Figure 10 plots ex ante portfolio standard deviations (w′
tQtwt)1/2 at the optimizing

weights wt. LT models clearly yield smaller variances of optimizing portfolios than
NT models. The risk ratios based on these portfolio standard deviations for the
NT model relative to the LT model are displayed in Figure 10; LT models exhibit
roughly 20 percent lower risk in their portfolios. Table 3 reports the average risk
ratios from the full analyses, indicating that the portfolio variances are likely smaller
in using LT models, and that the ratios tend to be larger in rather more flexible
specifications, LM-AF and LM-IF models, than in CM-IF models. Overall, this
implies that the LTDFM structure plays a considerably beneficial role in reducing
predicted investment risk in the portfolio allocations.

One further aspect of interest is the trajectories of optimized portfolio weights
based on one-step ahead and five-step ahead forecasting, displayed in Figures 11
and 12, respectively. In the NT model, the allocation is mainly led by a long
position on EUR and a short position on CHF. This reflects quite a high correlation
between these two currencies in the estimated forecast variance matrix. By contrast,
LT models provide milder degrees of correlation between those two currencies,
yielding a smaller proportion of resources allocated to the entire currencies. The
lower degree of variation in portfolio weights resulting from the LT models leads
to more stable portfolios, which would also reduce transaction costs in reality.
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Figure 10 Portfolio risk: ex ante portfolio standard deviation, (w′
tQtwt)1/2 based on one-step ahead

forecasting of LM-AF models for (a) the portfolio under the target return of m=0.06% (top), and (b)
the target-free minimum-variance portfolio (bottom). Time trajectory (left panels) and histogram
of the risk ratio for NT model relative to LT model (right panels). The vertical line in the histogram
refers to the ratio of one.

Table 3 Portfolio risk ratio: ex ante ratio of portfolio standard deviation under the NT
models relative to the LT models, averaged across 100 business days

LM-AF LM-IF CM-IF

One-step ahead forecasts
Target return:
m=0.02 1.033 1.007 1.185
0.04 1.149 1.187 1.062
0.06 1.232 1.407 0.969
Target-free 1.234 1.205 1.193

Five-step ahead forecasts
Target return:
m=0.02 1.067 1.027 1.178
0.04 1.158 1.102 1.058
0.06 1.223 1.150 0.979
Target-free 1.249 1.224 1.172

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/11/1/116/1032674 by G

uangzhou Jinan U
niversity user on 17 Septem

ber 2024



Copyedited by: GS MANUSCRIPT CATEGORY: Article

[14:08 30/11/2012 nbs013.tex] JFINEC: Journal of Financial Econometrics Page: 137 116–153

NAKAJIMA & WEST | Latent Threshold Factor Modeling 137

50 100

0.0

0.5

GBP
NT 
LT 

50 100

0

2

EUR

50 100

0.0

0.5

JPY

50 100

0.0

0.5

CAD

50 100

−0.5

0.0

0.5

AUD

50 100

−1

0

CHF

50 100

0.0

0.5 GBP
NT 
LT 

50 100

0

1

EUR

50 100

0.0

0.5

JPY

50 100

0.0

0.2

0.4
CAD

50 100

−0.3

0.0

0.3

AUD

50 100

−1

0

CHF

(a)

(b)

Figure 11 Trajectories of portfolio weights based on one-step ahead forecasts of the LM-AF models
for (a) the portfolio under the target return of m=0.06% (upper), and (b) the target-free minimum-
variance portfolio (lower).

3.3 Diagnostics

The model analysis and mean-variance portfolio strategy rely on a number of
modeling assumptions, among which is the assumed conditional normality of the
error terms—that for the observation errors νt and for the latent factor innovationsεt
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Figure 12 Trajectories of portfolio weights based on five-step ahead forecasts of the LM-AF models
for (a) the portfolio under the target return of m=0.06% (upper), and (b) the target-free minimum-
variance portfolio (lower).

in Equations (1) and (2), respectively. Non-normality would suggest consideration
of other forms of utility function in the portfolio strategy, such as power utility
functions that go beyond the mean-variance based forms to weigh risks in terms of
other distributional aspects.
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Figure 13 qq-plots for standardized errors ν̃it and ε̃jt against the standard normal (theoretical
quantiles on the horizontal axis) with approximate posterior 99% credible intervals (dashed lines).
Here, the residuals used represent just one random selection from the full posterior sample of
residuals, as an example of a typical case.

We assess consistency of the data with the assumed normal forms using a
number of traditional methods applied to posterior samples of the standardized
errors: ν̃it =νit/σit, and ε̃jt =εjt/ψjt for i=1 :m, j=1 :k. At each MCMC iteration we
save the current sampled values of each ν̃it and ε̃jt, building up a full posterior
sample of all (m+k)×T error terms. We can then explore and evaluate these
using any of a number of normality diagnostics. For this study, we utilized qq-
plots and two traditional nonparametric and parametric tests. Figure 13 graphs
qq-plots of the standardized errors against the standard normal, with approximate
posterior 99 percent credible intervals, using some of the residual values at one
randomly selected MCMC iterate. This is very typical; viewing many such plots
across the MCMC iterates, we see close concordance with normality as a general
rule, with only a few posterior samples observed showing slight deviations from the
theoretical quantiles in the tails. In simply viewing hundreds of repeat plots, in no
cases do we see significant deviation of sampled residuals outside the intervals.
These findings provide initial, exploratory graphical support for the assumed
normality.

We make this more formal and quantify the assessment of normality using
traditional test statistics, namely the nonparametric Pearson’s chi-square goodness-
of-fit test and the Shapiro–Wilk parametric test. For each of the two sets of residuals
sampled from their posterior at each MCMC iterate, we compute notional p-
values for each of these statistics. This yields a posterior distribution for the
p-values as one global numerical summary of extent to which the data support the
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Figure 14 Box-plots for posterior distributions of p-values in the normality tests using full posterior
samples of standardized errors ν̃it and ε̃jt: (1) Pearson’s chi-square normality test, and (2) Shapiro–
Wilk parametric normality test. Fi refers to Factor i.

normality assumed. Figure 14 shows box plots of these posteriors for each series;
it is clear that all the distributions are spread and favor larger values, strongly
confirming lack of evidence against normality. Importantly, this applies to both the
observation residual/error terms νit and the innovation terms εjt impacting on the
latent factor processes.

This concordance with the normality assumption is not, perhaps, so surprising
given that the overall LTDFM allows for volatility patterns overlaying the residuals,
and the models have dynamic adaptability in the latent factor components. We
comment further on these general questions in summary comments in the final
Section 6, simply concluding here that the model assumptions checked seem to be
quite reasonable based on these detailed diagnostics.

4 A STUDY OF FX AND COMMODITY PRICE TIME SERIES

A second study extends the FX time series above with three additional currencies
as listed in Table 4 and explores analysis now including a dynamic regression
component based on commodity prices, oil, and gold. This analysis now directly
models the logged prices of currencies in U.S. dollars, rather than the returns
analyzed above; that is, yt is the vector of (natural logs of) exchange rates at 4:30 pm
on day t. As covariates, we use prices of Brent Crude Oil futures and Comex Gold
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Table 4 Additional international currencies
relative to the U.S. dollar in exchange rate data

7 NOK Norwegian Krone
8 NZD New Zealand Dollar
9 ZAR South African Rand

futures. We define xt as the 2−vector of logged commodity prices on day t−1, and
yt as the 9−vector of logged exchange rates on day t. Thus the model has m=9
daily currency exchange rates, q=2 covariates and again we specify k =3 latent
factor processes. The time period is T =125 business days from the beginning of
January to the end of June in 2009, a turbulent period for the financial markets.

We employ the LTDFM with dynamic regression and autoregressive latent
factors, taking a special case of constant means (ct ≡c) in view of the predictive
component of the model. Note that both the factor loadings and dynamic regression
coefficients are governed by latent threshold VAR(1) process. We use priors as
specified in the initial analysis, detailed in Section 2.1 above, now augmented
by required priors on the dynamic regression AR hyper-parameters: 1/vαi ∼
G(40,0.005), (φαi +1)/2∼B(20,1.5), and μαi ∼N(0,1) for i=1 :18.

Figure 15 plots the trajectories of posterior probabilities of sbit =0 for the
factor loadings. Both global and local sparsity patterns found across the currencies
indicate adequately distinguished factors oriented by GBP, EUR, and JPY. Figure 16
shows the posterior means of trajectories of the factors and posterior distributions
of the latent factor AR parameters γi. The latter indicate values consistent with
highly persistent AR(1) processes for the factors. This suggests that modeling
exchange rates themselves can yield an utility in short-term forecasting; taking
returns from the prices may lose some information about short-term changes
in patterns of covariation. Figure 17 graphs posterior estimates of the dynamic
regression coefficients αt and the posterior probabilities of sait =0. For several
currencies, the posterior means of theαit are positive throughout the sample period;
consistent with context, positive movements in oil and gold tend to predict marginal
appreciation of these currencies against the U.S. dollar, all other things being equal.
The inferences further indicate effective whole-sequence sparsity for the major
currencies GBP, EUR, and JPY; the dynamic regressions on commodities are playing
no role in short-term prediction of these prices, with inferred coefficients zero or
close to zero across the entire time frame. This indicates that there is little room
for commodity prices to explain meaningful residual changes in these currencies
in the context of the dynamic factors estimated, which is further interpreted by
examining inferences on the factors themselves. Figure 16 plots the trajectories of
the commodity prices as well as estimated factors. We see that the posterior mean
trajectories of Factor1 and Factor2 are primarily correlated with the fluctuations of
oil price; in fact these correlations are high as 0.92 for Factor1 and 0.84 for Factor2.
The correlation between the factors and gold prices is relatively mild, around 0.2.
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Figure 15 Posterior probability of sbit =0 associated with the loadings for exchange rate and
commodity data.

The GBP and EUR leading factors essentially capture the predictive information in
oil price returns and, as a result, the latent threshold mechanism shrinks dynamic
regression effects very substantially.

Finally, we provide some comments on a further, detailed comparison using
portfolio analysis, focused on comparing NT and LT models. The portfolio
allocation rules and estimation strategy are as in Section 3. One-day ahead forecasts
and the optimal portfolios are computed over 25 business days beginning with
the first T =100 observations. We assume that the commodity returns in xn+1 are
available when we forecast the one-day ahead exchange rate yn+1. Figure 18 graphs
the resulting cumulative returns from this using both the NT and LT models; here
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Figure 16 Left panels: posterior means of factors fit and log of commodity prices (x-axis refers to
the month in 2009). Right panels: estimated posterior distribution of the γi.

we set a target return of m=0.06 percent and compared also based on the target-
free minimum-variance strategy. It is evident that the LT model dominates the
NT model for both the strategies. The most striking evidence is that the optimal
weights allocated to the 10 FX currencies are considerably shrunk towards zero in
the LT model as can be seen in Figure 19. This effective shrinkage yields higher
performance of the portfolios under the LTDFM structure.

5 A HIGHER-DIMENSIONAL STUDY: FX AND
STOCK PRICE TIME SERIES

A third data set serves to demonstrate a substantial, higher-dimensional applica-
tion. We analyze m=40 financial variables: daily FX time series of 20 currencies
relative to the U.S. dollar and stock price indices from 20 countries; see Table 5. The
returns are computed over a time period of 1000 business days beginning in January
2008 and ending in October 2011. This data set includes severely high volatility
periods of the financial crisis around 2008 and the European sovereign debt crisis
from 2010 to 2011. There exist similar volatility dynamics across countries as well
as several regionally or industrially common fluctuations. Exploratory analysis
suggests an initial model using k =7 factors, ordering the first seven variables in
yt as GBP, U.S.-stock, EUR, JPY, IDR, Germany-stock, and Brazil-stock. In addition
to GBP, EUR, and JPY used in the previous analysis, IDR (Indonesian Rupiah)
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Figure 17 Posterior means (solid) and 95% credible intervals (dotted) of time-varying regression
coefficients αt for exchange rate and commodity data. Posterior probabilities of sait =0 are plotted
below each trajectory.

is selected to capture exchange rate flows of emerging countries against the U.S.
dollar. U.S.-stock is intended to represent a global stock price measure, Germany-
stock describes common stock movements of European countries, and Brazil-stock
traces stock markets in the emerging countries. The analysis uses the same LTDFM
specification and priors as in the first example of Section 2.

Figure 20 plots the trajectories of estimated latent factors and their innovation
volatilities. Factor2 and Factor6 have levels of volatility higher than other factors
as they are led by stock prices of United States and Germany, respectively, and the
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Figure 18 Cumulative returns over 25 business days based on one-step ahead forecasting for (a)
portfolio under the target returns of 0.06% and (b) target-free minimum-variance portfolio using
exchange rate and commodity data.

latter exhibit higher levels of variability than the exchange rate series. As observed
in the first example, all the factor stochastic volatilities have peaks around the
last 3 months of 2008 due to the financial crisis. The volatilities of GBP-leading
Factor1 and JPY-leading Factor4 decline after that crisis to the end of the sample,
while the EUR-leading Factor3 shows considerable increases in volatility around
mid-2010 and during 2011 corresponding to the European sovereign debt crisis
triggered by the Greek government debt crisis arising in April 2010. At that time,
the U.S.-stock-leading Factor2, IDR-leading Factor5, and Germany-stock-leading
Factor6 commonly capture a sudden hike in volatility. These factors also exhibit
another significantly volatile period beginning in August 2011 when Standard &
Poor’s cut the long-term U.S. credit rating from triple-A to AA-plus.

Figure 21 shows the trajectories of estimated posterior probabilities of sbit =0
for selected loadings. The first row indicates that the U.S. stock market (Factor2)
is relevant to describing the Brazilian stock market in addition to the leading-
factor itself (Factor7). A drop of shrinkage probability on Brazil-Factor5 from the
beginning of 2009 presumably reflects the fact that exchange rate fluctuations in
emerging countries led by IDR affect some proportion of Brazilian stock market
volatility. Several factors associated with NZD (in the second row of the figure)
show clearly time-varying shrinkage patterns; in contrast, the model suggests the
Spain stock price index (in the third row) is primarily explained by the Germany-
stock-leading Factor6. The shrinkage pattern of the India stock price index (in
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Figure 19 Trajectories of portfolio weights based on the portfolio under the target return of m=
0.06% for exchange rate and commodity data.

the fourth row) exhibits some temporal changes on Factor2 and Factor5, while
German-stock Factor6 and Brazil-stock Factor7 are evidently relevant in explaining
the volatility dynamics. A variance decomposition analysis (not graphed here) also
indicates that each factor evidently well identifies the characteristics of commonly
observed fluctuations across the high-dimensional financial responses. In addition,
Figure 22 graphs a heat map of posterior probabilities of sbit =0 for all i and t. To
make the image clear, the rows corresponding to factor loadings have been ordered
to highlight patterns of difference. Red (black, in grey-scale version) areas show
high levels of LT shrinkage, while blue (white) areas imply relevant factor loadings
beyond the threshold. There exist red (black) bands indicating whole-sequence
shrinkage as well as some patterns of temporal shrinkage where the color is clearly
changing through time.

In line with the preceding examples, further analysis evaluated the LTDFM
models based on forecasting in portfolio allocation experiments. Forecast means
and covariance matrices of the 40 dimensional variables from one-step to five-
step ahead were computed every five business days with the first subset of data
up to time n=950. The optimal weights of the portfolio strategy were obtained for
target returns of m=0.02, 0.04, and 0.06 percent, as well as the target-free minimum
variance strategy. Table 6 reports cumulative returns of the portfolios resulting from
the sequential investment over 50 business days. Evidently, the LT structure leads to
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Table 5 20 international currencies for FX and 20 countries for stock price index

FX Stock price

1 GBP British Pound Sterling 1 United States
2 EUR Euro 2 Germany
3 JPY Japanese Yen 3 Brazil
4 IDR Indonesian Rupiah 4 Canada
5 CAD Canadian Dollar 5 Mexico
6 AUD Australian Dollar 6 UK
7 NZD New Zealand Dollar 7 France
8 CHF Swiss Franc 8 Spain
9 NOK Norwegian Krone 9 Italy
10 SEK Swedish Krona 10 The Netherlands
11 RUB Russian Ruble 11 Sweden
12 INR Indian Rupee 12 Swiss
13 PHP Philippine Peso 13 Japan
14 SGD Singapore Dollar 14 China
15 KRW South Korean Won 15 Hong Kong
16 TWD Taiwanese Dollar 16 Taiwan
17 THB Thai Baht 17 Korea
18 ZAR South African Rand 18 India
19 BRL Brazilian Real 19 Russia
20 CLP Chilean Peso 20 Australia

outcomes that dominate those of NT models regardless of the portfolio allocation
rules. The table also reports average transaction volume in weights per day for
each model; this indicates that the LT models entail lower levels of transaction
than the NT models. The investor benefit is essentially cumulative return minus
transaction cost, so that this is a very clear additional attraction of the threshold
model approach for increasingly high-dimensional problems: the sparsity induced
by the LT structure more effectively decreases overall uncertainties in the portfolio
decision-making process as dimension grows.

6 CONCLUDING REMARKS

We have presented and illustrated the use of latent threshold modeling in dynamic
factor volatility models. Our substantive examples assess comparative model fit
and sequential portfolio allocation analysis using FX return time series, and
reveal considerable utility of latent thresholding as an overlay to time-varying
parameter models for latent factor loadings. Full shrinkage to zero of subsets of
parameters when supported by the data leads to parameter reduction and model
simplification, and can feed through to both improved short-term forecasting as
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Figure 20 Posterior means of factors fit, posterior means (solid) and 95% credible intervals (dotted)
of factor stochastic volatility ψit =exp(λit/2) for FX and stock price data.

Table 6 Cumulative returns (%) and average
transaction (in weights per day) over 50 business
days for FX and stock price data

NT LT

Cumulative returns
Target return:
m=0.02 2.20 2.50
0.04 2.03 2.29
0.06 1.86 2.08
Target-free 2.39 2.73

Average transaction
Target return: m=0.02 0.27 0.18
0.04 0.38 0.25
0.06 0.51 0.36
Target-free 0.16 0.15
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Figure 21 Posterior probability of sbit =0 associated with selected loadings for FX and stock price
data. Brazil-stock, New Zealand Dollar FX, Spain-stock, and India-stock.

well as increased precision of both parameter inferences and forecasts. Dynamic
shrinkage–that allows parameter processes to take non-zero, time-varying values
over some periods of time but shrink to zero completely in others–is a natural
extension of traditional Bayesian sparsity modeling to the time series context, and
can engender these benefits adaptively over time.

There are a number of methodological and computational areas for further
investigation. Among them, we note the potential for more elaborate factor models,
such as FAVAR (Factor-Augmented VAR) models (e.g., Bernanke, Boivin, and Eliasz
2005; Baumeister, Liu, and Mumtaz 2010) where the latent thresholding strategy
can be expected to be increasingly beneficial as model dimension grows. We are
also interested in potential computational strategies for sequential model learning,
including sequential particle learning algorithms (e.g., Carvalho et al. 2010) for
LTDFMs, as implementation of sequential updating and forecasting is central
to investment decision making. In such contexts, the computations involved in
repeat MCMC analyses with a moving time window may become prohibitive and
sequential Monte Carlo methods become increasingly relevant.

That said, our examples show that scaling of the MCMC to moderately high
dimensional series will be accessible. The first example in Section 2 uses m=6 series
and k =3 factors (with p=12 loadings), while the m=40 dimensional example in
Section 5 has k =7 factors (p=252), with the time length almost equal. Regarding
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Figure 22 Heat map of posterior probabilities of sbit =0 for FX and stock price data. The rows
correspond to the full set of factor loadings, each plotted over time; the ordering of the rows
has been chosen simply to provide a clear visual layout of those loadings that tend to have high
probability over all time compared to those that are negligible for much of the time.

computational time, using a dual-core 3.3GHz CPU computer, the first example
takes 0.3 second per one iteration of MCMC, while this high-dimensional setting
takes only 3.7 seconds. That is, compute time increases just over 12-fold in moving
to the larger mode context, whereas the increase in the number of loadings is 21-
fold. We have not formally benchmarked performance in scaling to increasingly
high-dimensional settings, but this first experiment in scaling is encouraging.
Moving to higher-dimensions (hundreds of series) will require different coding
and computational strategies. For both MCMC and particle learning methods,
scaling will have to explore parallelization. Distributing core computational tasks
within each iterate of the demanding MCMC is one immediate consideration, and
most sequential Monte Carlo methods are naturally parallelizable. Future studies
will investigate the opportunities for parallelization that can exploit CUDA/GPU
(Suchard et al. 2010; Suchard, Holmes, and West 2010) implementations for
massively parallel desktop analyses as well as traditional multi-core approaches.

Among a number of potential model extensions and generalizations are models
in which the normal distributions of observation error terms and innovations might
be better represented as non-normal. With reference to the discussion of Section 3.3,
some potential applied contexts may suggest, on a theoretical and/or empirical
basis, heavier-tails or some degree of skewness. A very natural way to elaborate
the current model to adapt to this is to introduce discrete mixtures of normals in
place of the current normal conditional error forms. The Bayesian MCMC analysis is
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then easily adapted to allow for this (e.g., Frühwirth-Schnatter 2006; Prado and West
2010, ch. 7). That understood, in such contexts it can be argued that the traditional
mean-variance optimization strategy for portfolio decisions might be replaced
by approaches using utility functions that reflect risk measured in terms of tail
behavior as well as variance, as noted in Section 3.3. Thus, exploration of decision
analyses with power utilities and/or value-at-risk focused studies will respresent
interesting and important further directions. The issues of choice of utility functions
and how the resulting expected utilities capture different notions of risk is in
fact subtler than this; in any model in which fully Bayesian inference is properly
developed, the full posterior predictive distributions will be non-normal. Even with
normality of the conditional error and innovations distributions, as in the current
study, the posterior predictive distributions are not normal. Predictions average
over all uncertain factors and parameters, so these distributions are inherently non-
normal and heavy-tailed as a matter of routine. This raises the interesting additional
considerations for other utility functions as a general matter, beyond the scope of
the current study but certainly of interest in future work.
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