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Monetary policy and the private sector behaviour of the U.S. economy are modelled as a time
varying structural vector autoregression, where the sources of time variation are both the coefficients and
the variance covariance matrix of the innovations. The paper develops a new, simple modelling strategy
for the law of motion of the variance covariance matrix and proposes an efficient Markov chain Monte
Carlo algorithm for the model likelihood/posterior numerical evaluation. The main empirical conclusions
are: (1) both systematic and non-systematic monetary policy have changed during the last 40 years—in
particular, systematic responses of the interest rate to inflation and unemployment exhibit a trend toward
a more aggressive behaviour, despite remarkable oscillations; (2) this has had a negligible effect on the
rest of the economy. The role played by exogenous non-policy shocks seems more important than interest
rate policy in explaining the high inflation and unemployment episodes in recent U.S. economic history.

1. INTRODUCTION

There is strong evidence that U.S. unemployment and inflation were higher and more volatile in
the period between 1965 and 1980 than in the last 20 years. The literature has considered two
main classes of explanations for this difference in performance. The first class of explanations
(see, for instance,Blanchard and Simon(2001), Stock and Watson(2002), Sims and Zha
(2004)) focuses on the heteroscedasticity of the exogenous shocks, which have been much
more volatile in the 1970’s and early 1980’s than in the rest of the sample. The second
class of explanations emphasizes the changes in the transmission mechanism,i.e. the way
macroeconomic variables respond to shocks. Particular attention has been given to monetary
policy. If monetary policy varies over time, this has a potential direct effect on the propagation
mechanism of the innovations. Furthermore, if agents are rational and forward looking, policy
changes will be incorporated in the private sector’s forecasts, inducing additional modifications
in the transmission mechanism.

Many authors (among othersJudd and Rudebusch(1998), Clarida, Gaĺı and Gertler(2000),
Cogley and Sargent(2001, 2003), Boivin and Giannoni(2003), Lubik and Schorfheide(2004))
have argued that U.S. monetary policy was less active against inflationary pressures under the
Fed chairmanship of Arthur Burns than under Paul Volcker and Alan Greenspan. However,
this view is controversial. Other studies have in fact found either little evidence of changes in
the systematic part of monetary policy (Bernanke and Mihov(1998), Leeper and Zha(2002),
Hanson(2003)) or no evidence of unidirectional drifts in policy toward a more active behaviour
(Sims, 1999, 2001a).

This paper investigates the potential causes of the poor economic performance of the
1970’s and early 1980’s and to what extent monetary policy played an important role in
these high unemployment and inflation episodes. The objective here is to provide a flexible
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822 REVIEW OF ECONOMIC STUDIES

framework for the estimation and interpretation of time variation in the systematic and non-
systematic part of monetary policy and their effect on the rest of the economy. Two are the
main characteristics required for an econometric framework able to address the issue: (1) time
varying parameters in order to measure policy changes and implied shifts in the private sector
behaviour; (2) a multiple equation model of the economy in order to understand how changes
in policy have affected the rest of the economy. For this purpose, this paper estimates a time
varying structural vector autoregression (VAR), where the time variation derives both from the
coefficients and the variance covariance matrix of the model’s innovations. Notice that any
reasonable attempt to model changes in policy, structure and their interaction must include time
variation of the variance covariance matrix of the innovations. This reflects both time variation
of the simultaneous relations among the variables of the model and heteroscedasticity of the
innovations. This is done by developing a simple multivariate stochastic volatility modelling
strategy for the law of motion of the variance covariance matrix. The estimation of this model
with drifting coefficients and multivariate stochastic volatility requires numerical methods. An
efficient Markov chain Monte Carlo algorithm is proposed for the numerical evaluation of the
posterior of the parameters of interest.

The methodology developed in the paper is used to estimate a small model of the U.S.
economy, delivering many empirical conclusions. First of all, there is evidence of changes
both in non-systematic and systematic monetary policy during the last 40 years. The relative
importance of non-systematic policy was significantly higher in the first part of the sample,
suggesting that a Taylor-type rule is much less representative of the U.S. monetary policy in
the 1960’s and 1970’s than in the last 15 years. Furthermore, private sector responses to non-
systematic policy (monetary policy shocks) appear linear in the amplitude of non-systematic
policy actions. Turning to the systematic part of policy, there is some evidence of higher interest
rate responses to inflation and unemployment in the Greenspan period. However, a counterfactual
simulation exercise suggests these changes did not play an important role in the high inflation
and unemployment episodes in recent U.S. economic history. In fact, the high volatility of the
exogenous non-policy shocks seems to explain a larger fraction of the outbursts of inflation and
unemployment of the 1970’s and early 1980’s.

From the methodological perspective, this paper is related to the fairly well developed
literature on modelling and estimating time variation in multivariate linear structures.Canova
(1993), Sims (1993), Stock and Watson(1996) and Cogley and Sargent(2001) model and
estimate VARs with drifting coefficients. On the other hand, multivariate stochastic volatility
models are discussed byHarvey, Ruiz and Shephard(1994), Jacquier, Polson and Rossi(1995),
Kim, Shephard and Chib(1998), and Chib, Nardari and Shephard(2002). However, these
studies impose some restrictions on the evolution over time of the elements of the variance
covariance matrix. Typical restrictions are either the assumption that the covariances do not
evolve independently of the variances or a factor structure for the covariance matrix. Following
this line of research,Cogley(2003) andCogley and Sargent(2003) use time varying variances in
the context of VARs with drifting coefficients. However, in their model the simultaneous relations
among variables are time invariant. As will be made clear in the next section, their analysis
is limited to reduced form models, usable almost only for data description and forecasting.
Boivin (2001) considers the opposite case of time varying simultaneous relations, but neglects
the potential heteroscedasticity of the innovations.Ciccarelli and Rebucci(2003) extend the
framework ofBoivin (2001) allowing for t-distributed errors, which account for non-persistent
changes in the scale of the variances over time.Uhlig (1997) introduces unrestricted multivariate
stochastic volatility in the context of VARs, but his model assumes that the VAR coefficients
are constant. Here instead, both the coefficients and the entire variance covariance matrix of
the shocks are allowed to vary over time. This is crucial if the objective is distinguishing
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PRIMICERI TIME VARYING STRUCTURAL VARS 823

between changes in the typical size of the exogenous innovations and changes in the transmission
mechanism.

There is also a more recent literature that models time variation in linear structures with
discrete breaks, meant to capture a finite number of switching regimes (see, for instance,
Hamilton(1989), Kim and Nelson(1999), Sims(1999, 2001a), Sims and Zha(2004)). Discrete
breaks models may well describe some of the rapid shifts in policy. However, they seem less
suitable for capturing changes in private sector behaviour, where aggregation among agents
usually plays the role of smoothing most of the changes. Furthermore, even in a structural
VAR, the private sector equations can be considered as reduced form relations with respect
to a possible underlying behavioural model, where policy and private sector behaviour are not
easily distinguishable. If policy responds also to expectational future variables (instead of only to
current and past ones), then also the policy equation in the VAR will be a mixture of policy and
private sector behaviour, determining smoother changes of the coefficients. Finally, the existence
of any type of learning dynamics of private agents or the monetary authorities definitely favours
a model with smooth and continuous drifting coefficients over a model with discrete breaks.

From the perspective of the empirical application, this paper is related to a large literature
that analyses changes in the conduct of monetary policy and their effect on the rest of the
economy. Most of the existing academic work has emphasized the role of monetary policy in
the poor economic performance of the 1970’s (see, among others,Judd and Rudebusch(1998),
Clarida et al. (2000), Boivin (2001), Cogley and Sargent(2001, 2003), Boivin and Giannoni
(2003), Favero and Rovelli(2003), Lubik and Schorfheide(2004)). This paper contrasts the most
popular view and stresses the role of heteroscedastic non-policy innovations. In this respect, the
conclusions are more similar toBernanke and Mihov(1998) andSims and Zha(2004).

The paper is organized as follows.Section2 presents the time varying structural VAR model
adopted in the paper.Section3 illustrates the key steps of the estimation methodology.Section4
discusses the empirical results of the application to the U.S. economy.Section5 concludes.

2. THE MODEL

The model presented in this paper is a multivariate time series model with both time varying
coefficients and time varying variance covariance matrix of the additive innovations. The drifting
coefficients are meant to capture possible nonlinearities or time variation in the lag structure of
the model. The multivariate stochastic volatility is meant to capture possible heteroscedasticity
of the shocks and nonlinearities in the simultaneous relations among the variables of the model.
Allowing for time variation both in the coefficients and the variance covariance matrix leaves it
up to the data to determine whether the time variation of the linear structure derives from changes
in the size of the shocks (impulse) or from changes in the propagation mechanism (response).

It is worth noting that the model admits many types of shocks. Nevertheless the
heteroscedasticity assumption is limited to the additive innovations. This is not only for reasons
of convenience, but also because the time variation in the size of the additive shocks is a feature
of many empirical applications in macroeconomics.1 Furthermore, as recently emphasized by
Cogley and Sargent(2003), overlooking heteroscedasticity would generate fictitious dynamics
in the random coefficients.

Consider the model

yt = ct + B1,t yt−1 + · · · + Bk,t yt−k + ut t = 1, . . . , T . (1)

1. See for instanceBernanke and Mihov(1998) or Sims and Zha(2004).
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824 REVIEW OF ECONOMIC STUDIES

yt is ann × 1 vector of observed endogenous variables;ct is ann × 1 vector of time varying
coefficients that multiply constant terms;Bi,t , i = 1, . . . , k, aren × n matrices of time varying
coefficients;ut are heteroscedastic unobservable shocks with variance covariance matrix�t .
Without loss of generality, consider the triangular reduction of�t , defined by

At�t A′
t = 6t6

′
t , (2)

whereAt is the lower triangular matrix

At =


1 0 · · · 0

α21,t 1 · · ·
·
·
·

·
·
·

· · ·
· · · 0

αn1,t · · · αnn−1,t 1


and6t is the diagonal matrix

6t =


σ1,t 0 · · · 0

0 σ2,t
· · ·

·
·
·

·
·
·

· · ·
· · · 0

0 · · · 0 σn,t

 .

It follows that

yt = ct + B1,t yt−1 + · · · + Bk,t yt−k + A−1
t 6tεt , (3)

V(εt ) = In.

Stacking in a vectorBt all the R.H.S. coefficients, (3) can be rewritten as

yt = X′
t Bt + A−1

t 6tεt , (4)

X′
t = In ⊗ [1, y′

t−1, . . . , y′

t−k],

where the symbol⊗ denotes the Kronecker product.
A decomposition of the variance covariance matrix resulting in (4) is common, especially

in the literature considering the problem of efficiently estimating covariance matrices (see, for
instance,Pinheiro and Bates(1996), Pourahmadi(1999, 2000), Smith and Kohn(2002)). In the
context of time varying VAR models,Cogley (2003) and Cogley and Sargent(2003) have a
similar decomposition, but with a time invariantAt matrix. It is important to notice that allowing
the matrixAt to vary over time is crucial for a time varying structural VAR. A constantAt would
imply that an innovation to thei -th variable has a time invariant effect on thej -th variable. This is
clearly undesirable if the objective is modelling time variation in a simultaneous equation model,
where simultaneous interactions among variables are fundamental.

The modelling strategy consists of modelling the coefficient processes in (4) instead of (1).
Observe that there is a one to one mapping between (1) and (4) that fully justifies this approach.
Let αt be the vector of non-zero and non-one elements of the matrixAt (stacked by rows) and
σt be the vector of the diagonal elements of the matrix6t . The dynamics of the model’s time
varying parameters is specified as follows:

Bt = Bt−1 + νt , (5)

αt = αt−1 + ζt , (6)

logσt = logσt−1 + ηt , (7)
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PRIMICERI TIME VARYING STRUCTURAL VARS 825

where the distributional assumptions as regards(εt , νt , ζt , ηt ) are stated below. The elements
of the vectorBt are modelled as random walks, as are the free elements of the matrixAt . The
standard deviations (σt ) are assumed to evolve as geometric random walks, belonging to the class
of models known as stochastic volatility. This constitutes an alternative to ARCH models. The
crucial difference is that the variances generated by (7) are unobservable components.2

It is well known that a random walk process hits any upper or lower bound with probability
one and this is clearly an undesirable implication of this model. On the other hand, as long
as (5), (6) and (7) are thought to be in place for a finite period of time and not forever, this
set of assumptions should be innocuous. Moreover, the random walk assumption presents the
advantages of focusing on permanent shifts and reducing the number of parameters in the
estimation procedure. Notice that, in principle, the model can be easily extended to consider
more general autoregressive processes.3 Especially for the parameters of the variance covariance
matrix, this constitutes an advantage of this model over the so-called local scale models (see, for
example,Shephard, 1994a and the multivariate generalization ofUhlig, 1997).

All the innovations in the model are assumed to be jointly normally distributed with the
following assumptions on the variance covariance matrix:

V = Var




εt

νt

ζt

ηt


 =


In 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

 , (8)

where In is ann-dimensional identity matrix,Q, S andW are positive definite matrices. It is
worth noting that none of the restrictions on the structure ofV are essential. All the zero blocks
could be replaced by non-zero blocks, with only small modifications of the estimation procedure
that will be described in the next section. Nevertheless, there are at least two factors suggesting
a choice ofV such as the one described in (8). The first one is related to the already high
number of parameters of the model. Adding all the off-diagonal elements ofV would require the
specification of a sensible prior, able to prevent cases of ill-determined parameters. The second
(and more important) reason is that allowing for a completely generic correlation structure among
different sources of uncertainty would preclude any structural interpretation of the innovations.
A complete discussion of the issue is postponed to the next section.

Most of the paper will adopt the additional assumption ofS being block diagonal,
with blocks corresponding to parameters belonging to separate equations. In other words,
the coefficients of the contemporaneous relations among variables are assumed to evolve
independently in each equation. Even though it is not crucial, this assumption simplifies the
inference and increases the efficiency of the estimation algorithm. The general case ofS
unrestricted will be considered inSection4.4, which shows the robustness of the empirical results
to this simplifying assumption.

3. BAYESIAN INFERENCE

The following notation is used to denote the history of a generic vector of variablesωt up to a
generic timeτ :

ωτ
= [ω′

1, . . . , ω
′
τ ]

′.

2. SeeShephard(1996) for an overview of the econometric properties of the stochastic volatility model and a
comparison with ARCH.

3. Section4.4will provide some further discussion and evidence.
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826 REVIEW OF ECONOMIC STUDIES

For a generic matrix of variables and constant termsMt ,

Mτ
= [m′

1, . . . , m′
τ ]

′,

wheremt is a column vector constructed with the time varying elements ofMt .
The objective of this section is to lay out the econometric techniques used to estimate the

time varying structural VAR model presented in the previous section. Bayesian methods are
used to evaluate the posterior distributions of the parameters of interest,i.e. the unobservable
states,BT , AT , 6T and the hyperparameters of the variance covariance matrixV . Observe that,
dealing with unobservable components, where the distinction between parameters and shocks is
less clear than in other situations, a Bayesian approach is the natural one. Three other factors
make Bayesian methods particularly suitable for estimating this class of models and preferable
to classical estimation. First, if the variance of the time varying coefficients is small, the classical
maximum likelihood estimator of this variance has a point mass at zero. This is related to the
so-called pile-up problem (see, for instance,Sargan and Bhargava(1983), Shephard and Harvey
(1990), Stock and Watson(1998)). The second drawback of classical maximum likelihood is
related to the high dimensionality and nonlinearity of the problem. Such a complicated model
will quite possibly have a likelihood with multiple peaks, some of which are in uninteresting
or implausible regions of the parameter space. Moreover, if these peaks are very narrow, the
likelihood may reach particularly high values, not at all representative of the model’s fit on a
wider and more interesting parameter region. In a Bayesian setting, the use of uninformative
priors on reasonable regions of the parameter space is nevertheless effective in ruling out these
misbehaviours. The third reason is practical: even though it is in principle possible to write
up the likelihood of the model, it is a hard task to maximize it over such a high dimensional
space. Bayesian methods deal efficiently with the high dimension of the parameter space and
the nonlinearities of the model, splitting the original estimation problem in smaller and simpler
ones. Here, Gibbs sampling is used for the posterior numerical evaluation of the parameters of
interest. Gibbs sampling is a particular variant of Markov chain Monte Carlo (MCMC) methods
that consists of drawing from lower dimensional conditional posteriors as opposed to the high
dimensional joint posterior of the whole parameter set.

Finally, observe that MCMC is a smoothing method and therefore delivers smoothed
estimates,i.e. estimates of the parameters of interest based on the entire available set of data.
The suitability of smoothed estimates, as opposed to filtered ones, cannot be establisheda priori,
but clearly depends on the specific problem at hand. For example, filtered estimates are more
appropriate if the objective of the investigation is constructing model diagnostics (and marginal
likelihoods) or forecasting evaluation. The use of simulation based filters is required in these
cases. Simulation based filters for these kinds of problems are known as particle filters, which
are beyond the scope of this paper (for an overview, seeDoucet, De Freitas and Gordon, 2001).
On the other hand, smoothed estimates are more efficient (and therefore preferable) when, like in
this paper, the objective is an investigation of the true evolution of the unobservable states over
time. In these cases, filtered estimates are inappropriate because they would exhibit transient
variation even in time invariant models (as pointed out bySims, 2001b).

The rest of the section contains a description of the priors, a sketch of the estimation
strategy (the details are inAppendixA) and an explanation of how to deal with non-triangular
identification structures.

3.1. Priors and ordering

The prior distributions proposed in this paper are chosen because of their intuitiveness and
convenience in the applications. First of all, it is convenient to assume that the initial states
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PRIMICERI TIME VARYING STRUCTURAL VARS 827

for the coefficients, for the covariances, for the log volatilities and the hyperparameters are
independent of each other. The priors for the hyperparameters,Q, W and the blocks ofS, are
assumed to be distributed as independent inverse-Wishart. The priors for the initial states of
the time varying coefficients, simultaneous relations and log standard errors,p(B0), p(α0) and
p(logσ0), are assumed to be normally distributed.4 These assumptions together with (5), (6)
and (7) imply normal priors on the entire sequences of theB’s, α’s and logσ ’s (conditional on
Q, W andS).

The normal prior onB is standard.Smith and Kohn(2002) use the same decomposition as
in (2) and place a similar, normal prior on the elements ofA. In the context of VAR models,
Sims and Zha(1998) also use a similar prior. Placing a prior on the elements ofA, as opposed to
A−1, might seem strange. However, the statistics literature has long recognized the advantages
of modelling the inverse of the variance covariance matrix, as opposed to the covariance matrix
itself (Dempster(1972), Cox and Wermuth(1996)). The log-normal prior on theσ ’s is common
in the stochastic volatility literature (see, for instance,Harveyet al. (1994), Kim et al. (1998)).
Such a prior is not conjugate, but has the advantage of maintaining tractability. On the other
hand, inverse-gamma and inverse-Wishart priors (which are conjugate) have been used for local
scale models (Shephard(1994a), Uhlig (1997)). SeeShephard(1994b) for a comparison of the
two approaches in the univariate framework.

Finally, it is important to highlight a potential drawback of the modelling assump-
tions (4), (6), (7) and (8), in combination with the priors on theA’s and6’s. The drawback
is the fact that, in principle, the order of the variables matters in (4). This is due to the lower
triangular structure imposed on theAt matrix. More precisely, consider the vectorỹt , obtained
from a permutation of the order of the elements of the vectoryt . Similarly, let �̃t denote the
covariance matrix obtained from the same permutation of the rows and columns of�t . It can be
shown that it is impossible to find a lower triangular matrixÃt and a diagonal matrix̃6t such
that

Ã−1
t 6̃t 6̃

′
t Ã−1′

t = �̃∗
t ,

where the free elements of̃At are normal, the free elements of6̃t are log-normal and̃�∗
t has

the same distribution as̃�t . One way to see it is by noticing that the(1, 1) element of�̃∗
t would

necessarily be log-normally distributed, while the(1, 1) element of�̃t is not.5 Usually, in a time
invariant setting, the lower triangular structure imposed onA does not affect inference (because,
for the variance covariance matrix, the likelihood soon dominates the prior). In this time varying
setting however, it is less clear what may happen and the relevance of this issue might vary from
case to case.

Observe that, if one is particularly concerned about this problem, there exists a natural
solution, which is to impose a prior on all plausible orders of the variables of the system.
Consequently, results obtained with different orders can be averaged on the basis of the prior
or the posterior probabilities of different models (the models’ posterior probabilities can be
obtained, for instance, using the reversible jump MCMC method, described below). It is worth
pointing out that, in the context of the empirical application of this paper, the results obtained
with different orders of the variables are very similar.

4. The values of means, variances, degrees of freedom and scale matrices are specified in the next section, where
the application to the U.S. data is discussed.

5. For example, in the two-dimensional case, the(1, 1) element of�̃t would be the sum of a log-normal
distribution and the product of another log-normal distribution and a normal distribution squared. This sum is not log-
normal.
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828 REVIEW OF ECONOMIC STUDIES

3.2. Simulation method

The model is estimated by simulating the distribution of the parameters of interest, given the
data. While the details are left toAppendixA, this section sketches the MCMC algorithm used
to generate a sample from the joint posterior of

(
BT , AT , 6T , V

)
. As mentioned above, Gibbs

sampling is used in order to exploit the blocking structure of the unknowns. Gibbs sampling is
carried out in four steps, drawing in turn time varying coefficients (BT ), simultaneous relations
(AT ), volatilities (6T ) and hyperparameters (V), conditional on the observed data and the rest
of the parameters.

Conditional onAT and6T , the state space form given by (4) and (5) is linear and Gaussian.
Therefore, the conditional posterior ofBT is a product of Gaussian densities andBT can be
drawn using a standard simulation smoother (Carter and Kohn(1994) or Fruhwirth-Schnatter
(1994)). For the same reason, the posterior ofAT conditional onBT and6T is also a product
of normal distributions. HenceAT can be drawn in the same way. Drawing6T instead is
more involved and relies mostly on the method presented inKim et al. (1998). It consists
of transforming a nonlinear and non-Gaussian state space form in a linear and approximately
Gaussian one, which, again, allows the use of standard simulation smoothers. Simulating the
conditional posterior ofV is standard, since it is the product of independent inverse-Wishart
distributions.

Observe that the model and the posterior simulation method are close toShephard(1994b).
Indeed, the model belongs to the abstract class of partially non-Gaussian state space models,
introduced byShephard(1994b). However, this abstract class of models is quite broad and in
Shephard(1994b) there is no treatment for the general multivariate case.

3.3. Identification and structural interpretation

The method described in the previous subsection andAppendix A allows one to estimate a
reduced form VAR. However, as long as an exact identification scheme for the additive shocks is
available, a structural VAR can be easily estimated in two steps. Consider the following structural
VAR:

yt = X′
t Bt + 4tεt ,

that differs from (4) because then × n matrices4t , t = 1, . . . , T , are not necessarily lower
triangular. Assume further that for anyt , 4t contains at leastn(n−1)

2 restrictions which guarantees
identification.6 The first step consists of estimating the reduced form VAR, following the
methodology illustrated in the previous sections. This first step delivers the posterior of theB’s
and the�’s7 at every point in time. To obtain the numerical evaluation of the posterior of the
4’s, it suffices to solve the system of equations given by

4t4
′
t = �t , t = 1, . . . , T (9)

for every draw of�t . Observe that, even though this is a fairly general procedure, there may exist
identifying structures of4t for which (9) has no solution. As an illustrative example, consider
the following structure for4t , in a three-by-three case:

4t =

 x 0 0
0 x x
x x x

 , (10)

6. These can be zero restrictions or cross-element restrictions.
7. Remember that�t , t = 1, . . . , T , are the variance covariance matrices of the errors of the reduced form VAR

at every point in time.
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where thex’s indicate the elements potentially different from zero. Equation (10) implies a
variance covariance matrix of the reduced form residuals with zero in the position(1, 2) that
would not be compatible with draws of�t obtained using the decomposition in (4) unless the
element(1, 2) of the draw is very close to zero (in this case the solution would be approximate,
but probably still reliable). If the draw of�t has the(1, 2) element far from zero, the draw must
be discarded. It is clear that the method is not efficient if the rejection rate is high. On the other
hand, this is not too worrying if a high rejection rate is thought of as a signal of a structure for
4t rejected by the data.

Clearly, if the identification is based on a triangular scheme (like the one in the next section),
the solution to (9) is simply given by4t = A−1

t 6t . Observe that this framework does not
allow an efficient estimation of overidentified systems, unless the overidentification derives from
further zero restrictions in a triangular scheme. This case is easily made tractable by imposing
the corresponding restrictions.

As anticipated inSection2, this is the right framework for attempting some structural
interpretations. The fact that the elements of4 are time varying represents the crucial difference
between modelling time variation in a structural VAR as opposed to a standard VAR. In fact,
models characterized by a time invariant variance covariance matrix (Canova(1993), Sims
(1993) or Cogley and Sargent(2001)) or in which only the variances are drifting (Cogley(2003),
Cogley and Sargent(2003)) imply that all the contemporaneous relations among variables
are time invariant. And this seems undesirable in a context in which all the lag coefficients
are time varying. The other extreme, a model with time varying variance covariance matrix
but constant coefficients (Uhlig, 1997) is probably less undesirable but may appear restrictive
too.

Of course, the flexibility of the model of this paper does not come without costs. And
the main one derives exactly from the lack of strong restrictions, able to isolate the sources
of uncertainty. An example will clarify the issue: consider the common specification of the
“monetary policy” VAR used below (a three-variable VAR with inflation, unemployment and
a short-term interest rate). Assume that a reliable identification scheme is available for the
monetary policy equation (say a triangular identification based on the assumptions that inflation
and unemployment react to the policy instrument with at least one period of lag). In a time
invariant framework this would allow the use of standard structural VAR tools, as impulse
responses and variance decompositions. This is because there is just one source of shocks for the
monetary policy equation, that is the usual additive innovation. The situation is not as simple for
a time varying structural VAR because the potential sources of monetary policy shocks are many
and depend on the specific assumptions on the variance covariance matrix of all the innovations
of the model. Looking at equation (8) for example, in the model described in this paper there
would be at least three independent sources of monetary policy shocks.8 The first is the usual
additive shock (ε). The second is a shock to the interest rate reaction tocurrent inflation and
unemployment (ζ ). The third is a shock to the interest rate reaction topastvalues of the variables
of the system (ν). Monetary policy shocks of the first type are assumed to be independent of any
other innovation. This assumption is crucial for the interpretation of the effects of such shocks,
besides the existence of other innovations in the system. On the other hand, shocks of the second
type are assumed to be correlated within equation, but uncorrelated across equations (ifS is
assumed block diagonal). This assumption would allow, for example, the analysis of the impact
of shocks to the systematic part of monetary policy on the rest of the economy. Shocks of the
third type are instead potentially correlated also across equations. This means that innovations
of the third type to the non-policy equations will potentially affect also the monetary policy

8. Not considering the shocks to the standard deviations of the additive innovations.
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equation. However, this is not necessarily a bad assumption. On the contrary, it seems to move
in the direction of more realism in admitting that there exist sources of uncertainty in the system
that cannot be easily separable and othogonalized for each equation. Actually, a full correlation
structure for the block [ζ ′, ν′] would be even more appropriate, particularly if the VAR is thought
as a reduced form representation of a forward looking model, where most of the coefficients of
the VAR would be convolutions of the original parameters of the model. However, while it is
relatively easy to allow for a full variance covariance matrix for the block [ζ ′, ν′], it would
come at the cost of a substantially increased number of parameters.Section4.4 will provide an
evaluation of the empirical importance of cross-equation correlation among parameters, showing
that the model is not restrictive in practice. An additional note of caution is necessary: in fact,
if a full correlation structure among parameters exists, it would probably show up in a dynamic
setting, especially if learning plays a role in the economy. This potential kind of correlation is
absent in the model.

4. A SMALL MODEL OF THE U.S. ECONOMY

The techniques just described are applied for the estimation of a small quarterly model of the
U.S. economy. Three variables are included in the model: inflation rate and unemployment rate,
representing the non-policy block, and a short-term nominal interest rate, representing the policy
block.9 Even though most of the literature has preferred larger sets of variables (see, for instance,
Leeper, Sims and Zha(1996), Bernanke and Mihov(1998), Christiano, Eichenbaum and Evans
(1999)), there are a few existing papers that use the same small system of equations (for example,
Rotemberg and Woodford(1997), Cogley and Sargent(2001, 2003), Stock and Watson(2001)).
Here, the choice is mostly due to the attempt to reduce the number of parameters of the model. As
already mentioned, the alternative would be to use a wider set of variables at the cost of tighter
priors, necessary to avoid ill behaviours.10

The sample runs from 1953:I to 2001:III. Two lags are used for the estimation. The
simulations are based on 10,000 iterations of the Gibbs sampler, discarding the first 2000 for
convergence. As shown inAppendixB, the sample autocorrelation functions of the draws decay
quite fast and the convergence checks are satisfactory.

4.1. Priors

The first 10 years (40 observations, from 1953:I to 1962:IV) are used to calibrate the prior
distributions. For example, the mean and the variance ofB0 are chosen to be theOLS point
estimates (̂BOLS) and four times its variance in a time invariant VAR, estimated on the small
initial subsample. In the same way, a reasonable prior forA0 can be obtained. For logσ0 instead,
the mean of the distribution is chosen to be the logarithm of theOLS point estimates of the
standard errors of the same time invariant VAR, while the variance covariance matrix is arbitrarily

9. All series are taken from the Standard and Poor’s DRI database. Inflation is measured by the annual growth
rate of a chain weighted GDP price index. Unemployment is the unemployment rate referred to all workers over 16.
The nominal interest rate is the yield on three-month Treasury bills, preferred to the more conventional federal fund rate
because they are available for a longer period of time.

10. In order to solve this problem, an interesting line for future research would be to assume the existence of
common factors driving the dynamics of the coefficients. This approach would be very useful to reduce the rank of the
variance covariance matrix of the innovations to the coefficients on the lags. The idea is the following: replace (5) with
Bt = Bt−1 + Cξt , whereξt has dimension lower thanBt . This can be handled by the estimation procedure ofSection3,
adding an extra step in order to draw theC matrix. The state equation can be rewritten asBt = B0 + C

∑t
s=1 ξs and

substituted in the measurement equation (4). Conditional on the rest of the parameters, the posterior ofvec(C) turns out
to be normally distributed with known mean and variance.
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assumed to be the identity matrix. Finally, degrees of freedom and scale matrices are needed for
the inverse-Wishart prior distributions of the hyperparameters. The degrees of freedom are set to
4 for W and 2 and 3 for the two blocks ofS (basically, one plus the dimension of each matrix).
The reason that the degrees of freedom are chosen differently is that for the inverse-Wishart
distribution to be proper the degrees of freedom must exceed the dimension respectively toW
and the blocks ofS. For Q the degrees of freedom are set to 40 (the size of the previous initial
subsample), since a slightly tighter prior seems to be necessary in order to avoid implausible
behaviours of the time varying coefficients (seeSection4.4for a detailed discussion). Following
the literature (Cogley and Sargent(2001, 2003), Cogley(2003)), the scale matrices,Q, W, S1
andS2, are chosen to be constant fractions of the variances of the correspondingOLSestimates
on the initial subsample (multiplied by the degrees of freedom, because, in the inverse-Wishart
distribution, the scale matrix has the interpretation of sum of squared residuals). Summarizing,
the priors take the forms:

B0 ∼ N(B̂OLS, 4 · V(B̂OLS)),

A0 ∼ N(ÂOLS, 4 · V(ÂOLS)),

logσ0 ∼ N(log σ̂OLS, In),

Q ∼ I W(k2
Q · 40 · V(B̂OLS), 40),

W ∼ I W(k2
W · 4 · In, 4),

S1 ∼ I W(k2
S · 2 · V(Â1,OLS), 2),

S2 ∼ I W(k2
S · 3 · V(Â2,OLS), 3),

where S1 and S2 denote the two blocks ofS, while Â1,OLS and Â2,OLS stand for the two
corresponding blocks of̂AOLS. The benchmark results presented in this section are obtained using
the following values:kQ = 0·01,kS = 0·1,kW = 0·01. Set in this way, the priors are not flat, but
diffuse and uninformative. The reader is referred toSection4.4 for a detailed discussion of this
choice and of the robustness of the results to alternative prior specifications. The discussion of the
empirical results starts with the analysis of time variation of the U.S. non-systematic monetary
policy.

4.2. Non-systematic monetary policy

The term non-systematic monetary policy is used to capture both “policy mistakes” and
interest rate movements that are responses to variables other than inflation and unemployment
(therefore exogenous in this set-up). Identified monetary policy shocks are the measure of non-
systematic policy actions. The identifying assumption for the monetary policy shocks is that
monetary policy actions affect inflation and unemployment with at least one period of lag.
Therefore, interest rates are ordered last in the VAR. It is important to stress that this is not an
ordering issue (like the one highlighted inSection3.1), but an identification condition, essential
for isolating monetary policy shocks. Moreover, this identification assumption is completely
standard in most of the existing literature (for instance,Leeperet al. (1996), Rotemberg and
Woodford (1997), Bernanke and Mihov(1998), Christianoet al. (1999)). On the other hand,
the simultaneous interaction between inflation and unemployment is arbitrarily modelled in
a lower triangular form, with inflation first. As opposed to the previous one, this is not an
identification condition, but a necessary normalization. While this arbitrary normalization could
potentially make a difference (for the reasons illustrated inSection3.1), in the context of this
empirical application, it turns out that the ordering of the non-policy block does not affect the
results.
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FIGURE 1

Posterior mean, 16-th and 84-th percentiles of the standard deviation of (a) residuals of the inflation equation, (b) residuals
of the unemployment equation and (c) residuals of the interest rate equation or monetary policy shocks

If identified monetary policy shocks are the measure of non-systematic policy actions, it
seems natural to measure the relative importance and changes of non-systematic monetary pol-
icy by the time varying standard deviation of the identified monetary policy shocks.Figure1(c)
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presents a plot of the posterior mean and the 16-th and 84-th percentiles11 of the time varying
standard deviation of the monetary policy shocks. This graph presents at least two interesting
features. The period 79–83 exhibits a substantially higher variance of monetary policy shocks.
This is not surprising at all and confirms that the Volcker regime and his monetary aggregates
targeting was actually peculiar in the history of U.S. monetary policy. What is more interesting
is the fact that the volatility of monetary policy shocks was on average higher in the pre-Volcker
period than in the post-Volcker one, when it is very low and substantially constant. This suggests
that Taylor-type rules (like the one estimated in this paper) are very good approximations of the
U.S. monetary policy in the last 15 years, while it is likely that in the 1960’s and 1970’s the
Fed was responding to variables other than just inflation and unemployment.12 The result that
monetary policy shocks were more volatile before 1983 is robust to other specifications of the
interest rate equation. One obvious alternative is using the interest rates in logs instead of levels
and, consequently, interpreting the coefficients of the interest rate equation as semi-elasticities.
This modification of the baseline setting allows the interest rate responses to inflation and real
activity to differ, depending on the level of the interest rate itself. In other words, high responses
(and, therefore, large interest rate variability) are more likely when interest rates are high and
vice versa. This specification of the policy equation has been also suggested bySims (1999,
2001a). The estimation of the model using the log of the interest rate does not change the main
characteristics ofFigure1(c). Overall, the result that the volatility of monetary policy shocks is
higher in the pre-Volcker period and in the first half of the Volcker chairmanship is robust and
consistent withBernanke and Mihov(1998), Sims(1999, 2001a) andSims and Zha(2004).

The changes in the effects of non-systematic policy are summarized inFigures2 and3.
Figures2(a) and3(a) plot the impulse responses of inflation and unemployment to a monetary
policy shock in three different dates of the sample. The other graphs ofFigures 2 and 3
represent pairwise differences between impulse responses in different dates with the 16-th
and 84-th percentiles. The dates chosen for the comparison are 1975:I, 1981:III and 1996:I.
They are somewhat representative of the typical economic conditions of the chairmanships of
Burns, Volcker and Greenspan, but, apart from that, they are chosen arbitrarily.13 Clearly, these
responses do not vary much over time, indicating that the estimated coefficients do not show
much time variation. Some differences are detectable in the responses of inflation which, in the
Burns and Volcker periods, exhibit a small price puzzle. The price puzzle almost disappears in
the Greenspan period. However such an effect does not seem to be statistically significant once
standard errors are taken into account. Moreover, the stability of the response of unemployment
to policy shocks is remarkable.

Summarizing, there is no evidence of nonlinearities in the responses of the economy to
non-systematic policy.

4.3. Systematic monetary policy

Common and theoretically important measures of the degree of activism of the systematic
monetary policy are the responses of the interest rate to inflation and unemployment. To be

11. Under normality, the 16-th and 84-th percentiles correspond to the bounds of a one-standard-deviation
confidence interval.

12. Interestingly,Figure1 also shows how not only monetary policy shocks, but also the shocks to the inflation
and unemployment equations have a lower standard deviation in the second part of the sample.

13. Actually 1975:I is a NBER business cycle trough date, 1981:III is a NBER business cycle peak date and
1996:I is the middle date between the last NBER trough and peak dates (1991:I and 2001:I). They are meant to capture
very different economic conditions. Experiments with different dates and with averages over the periods 1970:I–1978:I,
1979:IV–1983:IV and 1987:III–2001:III (Burns chairmanship, Volcker monetary targeting and Greenspan chairmanship)
give very similar conclusions.
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FIGURE 2

(a) Impulse responses of inflation to monetary policy shocks in 1975:I, 1981:III and 1996:I, (b) difference between
the responses in 1975:I and 1981:III with 16-th and 84-th percentiles, (c) difference between the responses in 1975:I
and 1996:I with 16-th and 84-th percentiles, (d) difference between the responses in 1981:III and 1996:I with 16-th and

84-th percentiles

concrete, consider the modified version of the monetary policy rule ofClarida et al. (2000),
given by the following equations:

i t = ρ(L)i t−1 + (1 − ρ(1))i ∗t + emp
t (11)

i ∗t = i ∗ + φ̃(L)
(
πt − π∗

)
. (12)

i t is a short-term interest rate;i ∗t is a target for the short-term interest rate;πt is the inflation rate;
π∗ is the target for inflation;i ∗ is the desired interest rate when inflation is at its target;emp is
a monetary policy shock;ρ(L) andφ̃(L) are lag polynomials. In other words, the assumption is
that the monetary authorities specify a target for the short-term interest rate, but they achieve it
gradually (because they tend to smooth interest rate movements). Finally, observe that, just for
simplicity, (12) does not allow for any policy response to real activity. The combination of (11)
and (12) gives

i t = i + ρ(L)i t−1 + φ(L)πt + emp
t , (13)

wherei ≡ (1−ρ(1))
(
i ∗ − φ̃(1)π∗

)
andφ(L) ≡ (1−ρ(1))φ̃(L). Equation (13) is interpretable

as a Taylor rule, augmented in order to consider dynamically richer interest rate responses
to inflation. In the context of the popular New-Keynesian framework (seeWoodford, 2003
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FIGURE 3

(a) Impulse responses of unemployment to monetary policy shocks in 1975:I, 1981:III and 1996:I, (b) difference between
the responses in 1975:I and 1981:III with 16-th and 84-th percentiles, (c) difference between the responses in 1975:I and
1996:I with 16-th and 84-th percentiles, (d) difference between the responses in 1981:III and 1996:I with 16-th and 84-th

percentiles

for an overview), it has been argued that the Taylor principle is a necessary and sufficient
condition under which the rational expectation equilibrium exhibits desirable properties, such as
determinacy and expectational stability (Bullard and Mitra(2000), Woodford(2001, 2003)).14

In this general framework, the Taylor principle requires that

φ̃(1) > 1,

i.e. that the sum of coefficients of the target interest rate response to inflation must be bigger
than one. Observe that, in this framework,φ̃(1) coincides with (and, consequently, provides
an alternative interpretation for) φ(1)

(1−ρ(1))
, i.e. the long run interest rate response to inflation,

implied by the policy rule. Therefore, from a theoretical point of view, long run responses
are fundamental. From an empirical point of view, finite time responses of the interest rate to
unemployment and inflation seem more informative and realistic quantities. Recall that the time
varying variance covariance matrix plays a key role in the analysis of the simultaneous and long
run responses that follows.

14. The Taylor principle is only sufficient for determinacy and expectational stability if the monetary policy rule
includes an interest rate response to real activity (Woodford, 2001).
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FIGURE 4

Interest rate response to a 1% permanent increase of inflation with 16-th and 84-th percentiles. (a) Simultaneous response,
(b) response after 10 quarters, (c) response after 20 quarters, (d) response after 60 quarters

Figures4 and 6 present plots of the evolution of the responses of interest rate to a 1%
permanent increase in inflation and unemployment over the last 40 years. Chart (a) represents
the simultaneous response, charts (b), (c) and (d) the responses after 10, 20 and 60 quarters.
16-th and 84-th percentiles are also reported. Even if not exactly the same, the 60-quarter
response may be thought as a long run response (or, alternatively, the response of the target
interest rate) and therefore can be used to check the Taylor principle.15

A few results stand out. First, the correlation between simultaneous and long run responses
to inflation is high (Figure5), even though for the simultaneous response the upward sloping
trend is less pronounced. Second, the response of interest rate to inflation is often gradual. In other
words, it takes time for the interest rate to reach the long run response level after an inflationary
shock. Notice that usually, less aggressive contemporaneous responses reach approximately
the same level of the aggressive responses in less than 10 quarters. The dynamic response to
unemployment behaves quite differently. As shown inFigure7, the contemporaneous response

15. Note that the uncertainty around these responses increases with time. In particular, the posterior is clearly
skewed toward high level for the response to inflation and low levels for the response to unemployment. This is due to
the persistence of the interest rate that implies a sum of coefficients often close to one. This makes the long run responses
explode. For the same reason, the graphs report posterior medians instead of posterior means (which would be even
higher in absolute value). Finally, notice that the responses do not include the uncertainty about the future evolution of
the coefficients.
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FIGURE 5

Interest rate response to a 1% permanent increase of inflation

is almost the same as the long run one, suggesting that the Fed reacts to unemployment much
faster than to inflation. This is not surprising and due to the fact that the signal-to-noise ratio for
unemployment is probably perceived to be higher than for inflation. Apart from that, responses to
inflation and unemployment are quite highly correlated. This indicates that the periods in which
the Fed is more aggressive against inflation are the same periods in which monetary policy is
more reactive to unemployment fluctuations.

Third, looking at long run reactions, as many authors have emphasized, systematic monetary
policy has become more reactive to inflation and unemployment over the last 20 years with
respect to the 1960’s and 1970’s. However, the 1960’s and 1970’s do not seem to be characterized
by a violation of the Taylor principle. In fact, the long run reaction of the interest rate to inflation
remains above one for the whole sample period. This result differs from a large part of the
literature that has found an interest rate reaction to inflation lower than one before the beginning
of the 1980’s (see among othersJudd and Rudebusch(1998), Claridaet al. (2000), Cogley and
Sargent(2001)). This difference can be explained by the fact that this paper presentssmoothed
estimates that use all the information of the sample, as opposed tofilteredestimates that use only
the information contained in the relevant subsample. Strictly related to this, another reason that
may drive the conclusions reached by the previous literature is the fact that subsample estimates
may suffer from the well-known bias toward stationarity that characterizes many dynamic models
estimated on small samples. If for some reason (as it seems to be) the bias toward stationarity is
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FIGURE 6

Interest rate response to a 1% permanent increase of unemployment with 16-th and 84-th percentiles. (a) Simultaneous
response, (b) response after 10 quarters, (c) response after 20 quarters, (d) response after 60 quarters

larger in the subsample of the 1960’s and 1970’s this creates a larger bias of the long run reactions
of interest rate toward low levels.16

Fourth, neither the simultaneous reactions nor the long run ones seem to exhibit an
absorbing state, but rather a frequent alternation among states. This result partly confirmsSims’
(1999; 2001a) view of non-unidirectional regime switches, even though the upward sloping trend
of the long run response to inflation provides some evidence of a learning pattern toward a more
aggressive policy.

In order to establish the responsibility of the Fed in the high inflation and unemployment
episodes of the 1970’s and early 1980’s, it is particularly interesting to analyse the effects of
these changes of the systematic part of the policy on the rest of the economy. The methodology
for doing so is straightforward: observing the data, all the parameters of the model can be drawn
from the joint posterior (as described inSection3 andAppendixA). For every draw it is possible
to reconstruct the i.i.d. sequence of unit-variance structural shocks of the model. Starting from
1970:I these shocks can be used to simulate counterfactual data, constructed using different
values of the parameters. These new series can be interpreted as the realization of the data that

16. A way of checking the presence of a strong bias is to estimate a time invariant VAR on the relevant sample
and construct a 95% confidence interval based on the implied unconditional distribution. If the initial conditions of the
variables lie way outside the interval, this is a signal of the presence of some sort of bias. SeeSims(2000) for details.
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Interest rate response to a 1% permanent increase of unemployment

would have been observed had the parameters of the models been the ones used to generate the
series. In the context of this paper, the interesting experiment is “planting Greenspan into the
1970’s”. In other words, the idea consists of replaying history drawing the parameters of the
policy rule in the 1970’s from their posterior in 1991–1992,17 in order to see whether this would
have made any difference. This is done inFigure8, from which it is clear that the counterfactual
paths of inflation and unemployment do not differ much from the actual ones. Notice that a very
similar conclusion is reached if history is replayed using in the 1970’s the standard deviation of
the monetary policy shocks drawn from its 1991–1992 posterior.

Of course, aLucas(1976) critique issue arises in this type of counterfactual analysis. If
the policy rules adopted in the 1970’s and in the 1990’s were different, rational and forward
looking private agents would take this into account and modify their behaviour accordingly.
Therefore, the interpretation of “Greenspan into the 1970’s” is not straightforward, since the
counterfactual exercise takes the private sector behaviour in the 1970’s as given and unchanged.
However, there are many reasons that doing the exercise is interesting anyway. First, the effects
of the Lucas critique are drastically mitigated in any Bayesian framework, in which policy is
random. This argument is even stronger in this framework, in which there is an explicit model of

17. 1991–1992 posterior means the posterior of the average value of the parameters in the eight quarters of 1991
and 1992. Again, the choice of the dates is arbitrary, meant to capture a period of relative economic stability, with
relatively strong reactions to unemployment and inflation.
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FIGURE 8

Counterfactual historical simulation drawing the parameters of the monetary policy rule from their 1991–1992 posterior.
(a) Inflation, (b) unemployment

the stochastic time variation of policy. Second, according to the previous estimates, the changes
in policy between the Burns period and the Greenspan period do not seem to be drastic enough to
generate a different, previously unknown regime. In other words, the policy parameters of 1991–
1992 seem to belong to the private sector probability distribution over the policy parameters for
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almost all the 1970–1987 period, as appears fromFigures4and6 (even though these figures show
the smoothed estimates of the posteriors instead of the filtered ones). Third, the Lucas critique
would be a major problem if the counterfactual paths ofFigure8 were very different from the
actual paths of inflation and unemployment. Since they are not, it is less clear why rational private
agents would modify their behaviour in response to changes of the policy rule, which have minor
implications. Fourth, even when the counterfactual experiment is repeated, drawing not only the
monetary policy, but also the private sector’s parameters from their 1991–1992 posterior, the
picture (not reported) looks fundamentally unchanged.

Overall, these findings are in contrast with the anecdotal view that monetary policy was
very loose in the 1970’s and this caused the poor economic performance of that decade. On the
contrary, the impression is that the differences in the conduct of systematic interest rate poli-
cies under Burns, Volcker and Greenspan were not large enough to have any relevant effect on
the dynamics of inflation and unemployment. Indeed, additional counterfactual simulations (not
reported) show that the peaks of inflation and unemployment of the 1970’s and early 1980’s
seem to be better (although not completely) explained by the high volatility of the shocks that
characterized those periods.Figure1(a) and (b) show clearly that inflation and unemployment
residuals were less volatile after 1985. Inflation residuals’ variability reaches its peak around
1975, oscillating and finally declining since 1982. Less smooth seem to be the changes in the
unemployment residuals’ variability. In particular, the convergence toward a more stable regime
starts with a rapid volatility decrease between 1983 and 1985. These findings are in line with
other studies such asBlanchard and Simon(2001), Stock and Watson(2002), Hanson(2003),
andSims and Zha(2004).18

Of course, the small model used in this paper is not able to address the issue of the true
behavioural source of these sequences of particularly bad shocks. However, it is able to assert
that this source is neither a monetary policy sector specified as a Taylor rule, nor a stylized private
sector block with only inflation and real activity.

4.4. Sensitivity to priors and robustness to alternative specifications

This subsection shows robustness of the empirical results to alternative priors and specifications.

4.4.1. Priors and model’s fit. The main results ofSection4 were presented for the
particular prior specification chosen inSection4.1. This subsection justifies this choice and
demonstrates the robustness of the empirical conclusions to alternative prior specifications. While
the choice of the priors for the initial states is completely innocuous,19 the selection ofkQ, kS and
kW turns out to be more important. Especially forkQ this is not surprising: in a VAR with three
variables and two lags theQ matrix contains 231 free parameters. With such a high number of
free parameters, the specification of a sensible prior becomes essential, in order to prevent cases
of ill-determinations like the ones described inSection3.

While posterior inference can in principle be affected by the choice ofkQ, kS andkW, it
is worth noting thatkQ, kS and kW do not parameterize time variation, but just prior beliefs
about the amount of time variation. In large samples, as usual, the posterior mean converges to
the maximum likelihood estimator. Consider as an example the matrixQ, which represents the

18. It is worth pointing out that the data reject also the hypothesis that changes in the conduct of monetary policy
have influenced inflation and unemployment through an indirect channel,i.e. by affecting the variability of non-policy
shocks. In fact, the correlation between the innovations to the reactions to inflation and unemployment and the innovations
to the variances of inflation and unemployment are estimated to be essentially equal to zero (once the estimation algorithm
is extended to take into account the possibility that these correlations are different from zero).

19. Much flatter specifications of these priors (for example, with variances 10 or 20 times bigger) deliver exactly
the same results.
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amount of time variation in the coefficients (B’s). The random variableQ | BT is distributed as
an inverse-Wishart. It can be shown that the conditional posterior mean has the following form:

E(Q | BT ) =
v

v + T

Q

v
+

T

v + T
Q∗, (14)

where Q is the prior scale matrix,v are the prior degrees of freedom,Q∗ is the maximum
likelihood estimate ofQ (conditional onBT ) andT is the sample size.20 In this framework, the
choice ofkQ would affectQ. Given (14), it is easy to see thatkQ parameterizes time variation
only when the prior degrees of freedom are driven to infinity. In general the posterior mean will
be a combination of the prior and likelihood information, where the weights are determined by
the relative size of the degrees of freedom of the prior and the sample size.

This being said, three factors lead to the choice ofkQ = 0·01 in the benchmark model. First,
the model seems to misbehave if a higherkQ is chosen. It can be shown that, in the benchmark
case ofkQ = 0·01, the prior mean forQ implies a 95% probability of a 78% average cumulative
change of the coefficients over the relevant sample. This is saying thatkQ = 0·01 is a value
that does not particularly penalize time variation in the coefficients. With a prior that explicitly
favours a higher degree of time variation, the coefficients change considerably over time, but just
in order to explain outliers and to push the in-sample error to zero. Their time variation captures
much more high frequency variation than the one that would be captured by a pure random walk.
In other words, most of the variation of the data seems to be explained by the raw shocks as
opposed to the dynamics of the model.21 A strange behaviour such as this is typical of very
narrow likelihood peaks in very uninteresting regions of the parameter space, where the level
of the likelihood is not informative of the model’s fit. Moreover, any selection criterion based
formally (Uhlig, 2001) or informally on the shape of the impulse responses would reject this
model, which exhibits responses often exploding and with counterintuitive signs.

The second reason for choosingkQ = 0·01 is being consistent with the literature.Cogley
and Sargent(2001) use the same value.Stock and Watson(1996) experiment with values ofkQ

higher and lower than 0·01, pointing out that models with largea priori time variation do poorly
in forecasting. Notice that using a lowerkQ would only reinforce the conclusion that changes in
the conduct of monetary policy are not responsible for the economic instability of the 1970’s.

The third reason that justifies the choice ofkQ = 0·01 is a formal model selection. Proper
posterior probabilities for a set of models (characterized by different prior assumptions on the
time variation of the unobservable states) are computed. These are the probabilities of each
model, once all the other parameters are integrated out. They are computed according to the
reversible jump Markov chain Monte Carlo (RJMCMC) method described inDellaportas, Forster
and Ntzoufras(2002), that extends the original contribution ofCarlin and Chib(1995). In the
context of static and dynamic factor models,Lopes and West(2000) andJustiniano(2004) have
shown that RJMCMC outperforms alternative methods, on the basis of the computation of the
marginal likelihood (for an overview, seeJustiniano, 2004). The details of the application to
this model are provided inAppendixC. The posterior probabilities are computed for 18 models,
represented by all possible combinations ofkQ = {0·01; 0·05; 0·1}, kS = {0·01; 0·1; 1} and
kW = {0·001; 0·01}. Doing model selection to choose among models with different priors might
seem unusual. However, notice that this procedure is equivalent to imposing a single, more
complex prior, given by a mixture of the original, simple priors. Independently of the initial value

20. Remember that the scale matrix in the inverse-Wishart parameterization has the interpretation of sum of

squared residuals. ThereforeQv is interpretable as a variance and is comparable toQ∗.
21. The same type of misbehaviour appears if the prior degrees of freedom forQ are set to 22 (which is the

minimum in order to have a proper prior), unlesskQ is also reduced to approximately 0·003. In this case the results are
very similar to the ones of the benchmark case ofSections4.2and4.3.
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of the chain, the model characterized bykQ = 0·01, kS = 0·1 andkW = 0·01 gets a posterior
probability that is essentially one. The fact that only one of the models gets positive posterior
probability is not surprising and just indicates that the models’ space is sparse. Observe that,
while in some applications this is undesirable, here this is not a problem. In fact, the objective
is just avoiding of imposing priors that are clearly at odds with the data. Finally, notice that the
selected model is the one with the smallest value ofkQ. As argued above, this value ofkQ is
not very restrictive against time variation in the coefficients of the lag structure. Yet, the results
of Sections4.2 and4.3 seem to suggest that the amount of time variation of the coefficients of
the lag structure is small relative to the time variation of the covariance matrix. Therefore, while
in principle possible, it does not seem necessary to extend the model selection to include even
smaller values ofkQ. A similar argument applies to high values ofkW.

Given that the introduction of a time varyingAt matrix is one of the contributions of this
paper, there is no literature to refer to for a choice ofkS. Therefore,kS is fixed to 0·1 (the value
of the best fitting model) for the benchmark results. Also the choice ofkW = 0·01 is motivated
by the results of the model selection procedure. In addition, the model is estimated also for other
possible values ofkS andkW. The results (not reported) obtained withkS = 1 are very similar
to the benchmark case. Instead, whenkS is set to 0·01, the changes in the interest rate responses
to inflation and real activity are smaller and smoother. If anything, this reinforces the conclusion
that changes in the conduct of monetary policy are not responsible for the economic instability
of the 1970’s. IfkW is set to 0·001 the results are very much the same as in the baseline case.
This supports the idea that time variation in the volatilities is fundamental to improving the fit of
the model.

4.4.2. Random walk assumption. As discussed inSection 2, the random walk
assumption for the evolution of the coefficients and log variances has some undesirable
implications. In particular, it implies that the correlation among the reduced form residuals
may become arbitrarily large in absolute value. To show that these undesirable implications are
not to be taken too seriously, the model is re-estimated allowing the log standard errors and
the coefficients of the simultaneous relations to follow more general AR processes. In a first
experiment the autoregressive coefficients are all set to 0·95 (instead of 1 as in the random
walk assumption), producing results not relevantly different from the ones presented above.
In a second experiment these coefficients are estimated, by inserting an additional step in the
Gibbs sampler.22 Again, the results produced by such a model are in line with the results of the
benchmark model. The AR coefficients for the log standard errors of the residuals are estimated
to be very high (between 0·95 and 1), while the AR coefficients for the simultaneous relations
are estimated to be lower (between 0·5 and 0·9). The only consequence of this fact is that the
model captures many temporary parameter shifts, in addition to the permanent ones.

4.4.3. Cross-equation restrictions. The main results ofSection4 are presented for the
case ofSbeing block diagonal, with the block corresponding to parameters belonging to separate
equations. This choice simplifies the inference, but may be seen as an important restriction. To
verify that the results are not affected by such a choice, this assumption is now relaxed, allowingS
to be unrestricted. This involves a modification of the basic Markov chain Monte Carlo algorithm,
as reported inAppendixD. The model is re-estimated with this modified algorithm and the results
are very similar to the main ones ofSection4.23 The only notable difference is that in the case of

22. Drawing the states with the usual Gibbs procedure for state space forms, it is easy to draw the AR coefficients
of the state evolution equation. The posterior is in fact normal, centred on the OLS coefficient with variance equal to the
OLS variance.

23. The model is re-estimated using both the proposal distributions suggested inAppendixD. In both cases the
acceptance rate of the Metropolis–Hastings step is approximately 12% and the estimates are very similar to each other.
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an unrestrictedS the estimates of the simultaneous relations exhibit slightly less time variation
than in the benchmark case. Again, if anything, this strengthens the idea that changes in policy
are not very important for explaining the outbursts of inflation and unemployment. Furthermore,
the correlations of the innovations with the coefficients of different equations are estimated to be
basically zero.

In order to get some further insight into the relevance of cross-equation restrictions for
the application to the U.S. data, the model is re-estimated eliminating all the cross-equation
restrictions, also in the lag structure. In practice, bothS and Q are now assumed to be block
diagonal, with the blocks corresponding to elements of the same equation. The results do not
differ in any relevant way from the benchmark case, suggesting that cross-equation restrictions
are not quantitatively very important.

5. CONCLUSIONS

This paper applies Markov chain Monte Carlo methods to the estimation of a time varying
structural VAR. The sources of time variation are both the coefficients and, most importantly, the
variance covariance matrix of the shocks. The time variation in the variance covariance matrix of
the innovations not only seems to be empirically very important, but is also crucial for analysing
the dynamics of the contemporaneous relations among the variables of the system.

In particular, the paper focuses on the role of monetary policy in the dynamics of inflation
and unemployment for the U.S. economy. There is evidence of time variation in the U.S.
monetary policy. Non-systematic policy has changed considerably over the last 40 years,
becoming less important in the last part of the sample. Systematic monetary policy on the other
hand has become more aggressive against inflation and unemployment. Nevertheless, there seems
to be little evidence for a causal link between changes in interest rate systematic responses and
the high inflation and unemployment episodes. It is important to stress that this is not a statement
about neutrality of monetary policy. For example, it is quite conceivable that monetary policy
which does not respond to inflation at all would introduce substantial instability in the economy.
The estimates indicate, however, that within the range of policy parameters in the post-war
era, the differences between regimes were not large enough to explain a substantial part of the
fluctuations in inflation and unemployment. In particular, the less aggressive policy pursued by
Burns in the 1970’s was not loose enough to cause the great stagflation that followed. Indeed, the
peaks in inflation and unemployment of the 1970’s and early 1980’s seem to be better explained
by non-policy shocks than weaker interest rate responses to inflation and real activity.

In order to explore the true behavioural sources of these sequences of particularly bad
shocks, a larger and fully structural model is needed. This suggests a clear direction for future
research, namely allowing for a general form of simultaneity, overidentifying assumptions,
cross-equation restrictions in the VAR representation and for a larger set of variables, solving
the problem of the high number of parameters. A natural approach seems to be assuming the
existence of common factors driving the dynamics of the coefficients.

APPENDIX A. THE BASIC MARKOV CHAIN MONTE CARLO ALGORITHM

Appendix A.1. Step 1: Drawing coefficient states

Conditional onAT , 6T andV , the observation equation (4) is linear and has Gaussian innovations with known variance.
As shown inFruhwirth-Schnatter(1994) and Carter and Kohn(1994), the densityp(BT

| yT , AT , 6T , V) can be

The 12% acceptance rate seems acceptable, even though it is clear that the convergence is much slower than in the
baseline case. This might also explain why the estimates of the simultaneous relations exhibit slightly less time variation
than in the benchmark case.
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factored as

p(BT
| yT , AT , 6T , V) = p(BT | yT , AT , 6T , V)

∏T−1

t=1
p(Bt | Bt+1, yt , AT , 6T , V),

where

Bt | Bt+1, yt , AT , 6T , V ∼ N(Bt |t+1, Pt |t+1),

Bt |t+1 = E(Bt | Bt+1, yt , AT , 6T , V),

Pt |t+1 = Var(Bt | Bt+1, yt , AT , 6T , V).

p(·) is used to denote a generic density function, whileN denotes the Gaussian distribution. The vector ofB’s can be
easily drawn becauseBt |t+1 andPt |t+1 can be computed using the forward (Kalman filter) and the backward recursions
reported inAppendixA.6, applied to the state space form given by (4) and (5). Specifically, the last recursion of the
filter providesBT |T andPT |T , i.e. the mean and variance of the posterior distribution ofBT . Drawing a value from this

distribution, the draw is used in the backward recursion to obtainBT−1|T andPT−1|T and so on.24

Appendix A.2. Step 2: Drawing covariance states

The system of equations (4) can be written as

At (yt − X′
t Bt ) = At ŷt = 6t εt , (A.1)

where, takingBT as given,̂yt is observable. SinceAt is a lower triangular matrix with ones on the main diagonal, (A.1)
can be rewritten as

ŷt = Ztαt + 6t εt . (A.2)

αt is defined in (6) andZt is the followingn ×
n(n−1)

2 matrix:

Zt =



0 · · · · · · 0
−ŷ1,t 0 · · · 0

0 −ŷ[1,2],t ·
·
·

·
·
·

·
·
·

·
·
·

·
·
· 0

0 · · · 0 −ŷ[1,...,n−1],t


,

where, abusing notation,̂y[1,...,i ],t denotes the row vector
[
ŷ1,t , ŷ2,t , . . . , ŷi,t

]
.

Observe that the model given by (A.2) and (6) has a Gaussian but nonlinear state space representation. The problem,
intuitively, is that the dependent variable of the observation equation,ŷt , appears also on the R.H.S. inZt . Therefore,
the vector[̂yt , α̂t ] is not jointly normal and, thus, the conditional distributions cannot be computed using the standard
Kalman filter recursion. However, under the additional assumption ofS block diagonal, this problem can be solved by
applying the Kalman filter and the backward recursion equation by equation. This is not only because the dependent
variable of each equation,̂yi,t , does not show up on the R.H.S. of the same equation, but because the vectorŷ[1,...,i −1],t
can also be treated as predetermined in thei -th equation, due to the triangular structure. Another way to see this is to
reinterpret time as going through equations, that is treating different measurement equations as belonging to distinct and
subsequent time periods. Exactly like in the previous step of the sampler, this procedure allows one to recursively recover

αi,t |t+1 = E(αi,t | αi,t+1, yt , BT , 6T , V),

3i,t |t+1 = Var(αi,t | αi,t+1, yt , BT , 6T , V),

whereαi,t is thei -th block ofαt , corresponding to the coefficients of thei -th equation in (A.2). As above,αi,t can be
drawn recursively fromp(αi,t | αi,t+1, yt , BT , 6T , V), which isN(αi,t |t+1, 3i,t |t+1).

Notice that without block diagonality ofS it would not be possible to apply the recursions equation by equation
and to separately draw every blockαT

i . However, while theSblock diagonal assumption simplifies the analysis, it is not
essential andAppendixD provides a modification of this algorithm in order to deal with an unrestrictedS.

Appendix A.3. Step 3: Drawing volatility states

Consider now the system of equations

At (yt − X′
t Bt ) = y∗

t = 6t εt , (A.3)

24. For further details on Gibbs sampling for state space models seeCarter and Kohn(1994).
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where, takingBT and AT as given,y∗
t is observable. This is a system of nonlinear measurement equations, but can be

easily converted into a linear one, by squaring and taking logarithms of every element of (A.3). Due to the fact thaty2
i,t

can be very small, an offset constant is used to make the estimation procedure more robust. This leads to the following
approximating state space form:

y∗∗
t = 2ht + et (A.4)

ht = ht−1 + ηt . (A.5)

y∗∗
i,t = log[(y∗

i,t )
2

+ c]; c is the offset constant (set to 0·001);ei,t = log(ε2
i,t ); hi,t = logσi,t . Observe that thee’s and

theη’s are not correlated.25

The system in this form has a linear, but non-Gaussian state space form, because the innovations in the
measurement equations are distributed as logχ2(1). In order to further transform the system into a Gaussian one, a
mixture of normals approximation of the logχ2 distribution is used, as described inKim et al. (1998). Observe that
the variance covariance matrix of theε’s is the identity matrix. This implies that the variance covariance matrix of the
e’s is also diagonal, allowing one to use the same (independent) mixture of normals approximation for any element of
e. Kim et al. (1998) select a mixture of seven normal densities with component probabilitiesq j , meansm j − 1·2704,

and variancesv2
j , j = 1, . . . , 7. The constants{q j , m j , v

2
j } are chosen to match a number of moments of the logχ2(1)

distribution.AppendixA.7 reports the constants{q j , m j , v
2
j }.

26

DefinesT
= [s1, . . . , sT ]

′, the matrix of indicator variables selecting at every point in time which member of the
mixture of the normal approximation has to be used for each element ofe. Conditional onBT , AT , V andsT , the system
has an approximate linear and Gaussian state space form. Again, exactly like in the previous steps of the sampler, this
procedure allows one to recursively recover

ht |t+1 = E(ht | ht+1, yt , AT , BT , V, sT ),

Ht |t+1 = Var(ht | ht+1, yt , AT , BT , V, sT )

and recursively draw everyht from p(ht | ht+1, yt , AT , BT , V, sT ), which isN(ht |t+1, Ht |t+1).27

Conditional ony∗∗T and the newhT , it is possible to sample the newsT matrix, to be used in the next iteration.
As in Kim et al. (1998), this is easily done by independently sampling eachsi,t from the discrete density defined by

Pr(si,t = j | y∗∗
i,t , hi,t ) ∝ q j fN (y∗∗

i,t | 2hi,t + m j − 1·2704, v2
j ), j = 1, . . . , 7, i = 1, . . . , n.

Appendix A.4. Step 4: Drawing hyperparameters

The hyperparameters of the model are the diagonal blocks ofV : Q, W and the diagonal blocks ofS (corresponding to
parameters belonging to different equations). Conditional onBT , 6T , AT and yT , each square block has an inverse-
Wishart posterior distribution, independent of the other blocks. Moreover, conditional onBT , 6T , AT andyT , it is easy
to draw from these inverse-Wishart posteriors because the innovations are observable.28

Appendix A.5. Summary

To summarize, the sampler takes the form:

a. Initialize AT , 6T , sT andV .
b. SampleBT from p(BT

| yT , AT , 6T , V).

25. This is easy to see since theε’s and theη’s are independent. However, even if theε’s and theη’s were not
independent, thee’s and theη’s would be uncorrelated. For a proof of this result, seeHarveyet al. (1994).

26. In this paper the reweighting procedure used inKim et al. (1998) to correct the minor approximation error is
not adopted.

27. Cogley(2003) andCogley and Sargent(2003) have a similar model for the variances. However, to evaluate the
posterior they adopt the algorithm suggested byJacquier, Polson and Rossi(1994), that draws the volatility states one at a
time. As pointed out inCarter and Kohn(1994) andKim et al. (1998), this drastically increases the autocorrelations of the
draws and decreases efficiency.Uhlig (1997) has a similar model with constant coefficients. However, he adopts nonlinear
filtering procedures and importance sampling to evaluate the posterior. As stressed by Uhlig himself, importance
sampling procedures are subject to the risk of real inefficient sampling, in the cases in which, out of thousands of draws,
only a few of them have a non-zero weight.

28. SeeGelman, Carlin, Stern and Rubin(1995) for a description of the sampling procedure from a normal-
inverse-Wishart distribution, also when combined with natural conjugate priors.
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c. SampleAT from p(AT
| yT , BT , 6T , V).

d. Sample6T from p(6T
| yT , AT , BT , sT , V).

e. SamplesT from p(sT
| yT , AT , 6T , V).

f. SampleV , by samplingQ, W andS from p(Q, W, S | yT , BT , AT , 6T ) = p(Q | yT , BT , AT , 6T ) · p(W |

yT , BT , AT , 6T ) · p(S1 | yT , BT , AT , 6T ) · . . . · p(Sn−1 | yT , BT , AT , 6T ).

g. Go to b.

Appendix A.6. Gibbs sampling for state space models

Consider a measurement equation:

yt = Htβt + εt

and a transition equation

βt = Fβt−1 + ut

where [
εt
ut

]
∼ i.i.d. N

([
0
0

]
,

[
Rt 0
0 Q

])
·

Let

βt |s = E(βt | Ys, Hs, Rs, Q),

Vt |s = Var(βt | Ys, Hs, Rs, Q).

Then, givenβ0|0 andV0|0, a standard Kalman filter delivers:

βt |t−1 = Fβt−1|t−1,

Vt |t−1 = FVt−1|t−1F ′
+ Q,

Kt = Vt |t−1H ′
t (Ht Vt |t−1H ′

t + Rt )
−1,

βt |t = βt |t−1 + Kt (yt − Htβt |t−1),

Vt |t = Vt |t−1 − Kt Ht Vt |t−1.

The last elements of the recursion areβT |T andVT |T , which are the mean and the variance of the normal distribution
used to make a draw forβT . The draw ofβT and the output of the filter are now used for the first step of the backward
recursion, which providesβT−1|T andVT−1|T , used to make a draw ofβT−1. The backward recursion continues until
time zero. For a generic timet , the updating formulas of the backward recursion are:

βt |t+1 = βt |t + Vt |t F ′V−1
t+1|t (βt+1 − Fβt |t ),

Vt |t+1 = Vt |t − Vt |t F ′V−1
t+1|t FVt |t .

Appendix A.7. Selection of the mixing distribution to belogχ2(1):

ω q j = Pr(ω = j ) m j v2
j

1 0·00730 −10·12999 5·79596
2 0·10556 −3·97281 2·61369
3 0·00002 −8·56686 5·17950
4 0·04395 2·77786 0·16735
5 0·34001 0·61942 0·64009
6 0·24566 1·79518 0·34023
7 0·25750 −1·08819 1·26261

Source: Kim et al. (1998).
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APPENDIX B. CONVERGENCE OF THE MARKOV CHAIN MONTE CARLO
ALGORITHM

This appendix assesses convergence of the Markov chain Monte Carlo algorithm in the baseline application to the U.S.
data.29

First of all, different starting points of the chain (randomly selected) produce the same results. These results are also
not sensitive to the initial number of discarded draws or the total number of passes of the Gibbs sampler (an experiment
with 30,000 iterations, keeping one every three draws, gave the same results). For space reasons, a complete description
of the characteristics of the chain is provided only for 706 parameters of the model: the hyperparameters (the 241 free
elements ofV) and the volatilities (three sets of volatility states for 155 time periods).

In order to judge how well the chain mixes, common practice is to look at the autocorrelation function of the draws.
Low autocorrelations suggest that the draws are almost independent, which increases the efficiency of the algorithm.
Figure 9(a) plots the 20-th-order sample autocorrelation of the draws. In all three panels ofFigure 9, points 1–241
correspond to the free elements ofV (first the variances and then the covariances by row), while points 242–706
correspond to the volatilities (for every time period, by equation). With some exceptions the plot remains below 0·2
and often below 0·1. Closely related,Figure9(b) presents the inefficiency factors (IFs) for the posterior estimates of the
parameters. The IF is the inverse of the relative numerical efficiency measure ofGeweke(1992), i.e. the IF is an estimate
of

(
1 + 2

∑
∞
k=1 ρk

)
, whereρk is thek-th autocorrelation of the chain. In this application the estimate is performed using

a 4% tapered window for the estimation of the spectral density at frequency zero. Values of the IFs below or around
20 are regarded as satisfactory. Again, except for a few cases, the IFs are around or even below 20. The table below
summarizes the distribution of the IFs for the posterior estimates of all different sets of parameters. On average, the set
of parameters with the highest IFs are theA’s, for which it is not uncommon to have IFs between 4 and 75. In all other
cases, 90% of the IFs are below 25. The IFs are remarkably low for the time varying coefficients (B’s).

Median Mean Min Max 10-th Percentile 90-th Percentile

V 18·99 22·29 9·63 185·51 12·76 25·60
6 7·49 9·61 1·62 45·61 4·31 18·80
A 20·01 30·32 2·07 118·67 4·85 75·81
B 5·63 6·86 2·34 18·50 2·94 13·61

Summary of the distribution of the inefficiency factors for different sets of
parameters.V : elements of the covariance matrix of the model’s innovations;6:
time varying volatilities;A: time varying simultaneous relations;B: time varying
coefficients.

As a further check,Figure9(c) plots theRaftery and Lewis(1992) diagnostic of the total number of runs required to
achieve a certain precision (the parameters for the diagnostic are specified as follows: quantile= 0·025; desired accuracy
= 0·025; required probability of attaining the required accuracy= 0·95). The required number of runs is always far below
the total number of iterations of this application. To conclude, considering the very high dimensionality of the problem,
the convergence diagnostics seem satisfactory.

APPENDIX C. REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO (RJMCMC)

This appendix describes the RJMCMC algorithm used for the model selection. Further details on the method are inLopes
and West(2000), Dellaportaset al. (2002) andJustiniano(2004).

Consider a setM of competing models. In the case of this paper different models are characterized by different
prior assumptions on the time variation of the unobservable states, as described inSection4.1. For every modelm ∈ M ,
define the set of model’s parameters

θm
= {αm

1 , . . . , αm
T , logσm

1 , . . . , logσm
T , Qm, Sm, Wm

}.

In very general terms, the method consists of simulating the joint posterior probability distribution of the couple
(
m, θm)

.

This can be done using a standard Metropolis–Hastings approach. A proposal value
(
m′, θm′

)
is generated from a

proposal distributionqp

(
m′, θm′

)
= q

(
θm′

| m′
)

· J(m′). The new value is accepted with the usual Metropolis–

Hastings acceptance probability (stated below). If the proposal value is rejected, it is replaced by the previous element
of the chain. This procedure generates a set of values, which can be used to approximate the posterior of

(
m, θm)

and,
among other things, to compute posterior probabilities over the models’ space.

29. For the convergence checks, I used modified versions of codes of Alejandro Justiniano and James P. LeSage.
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FIGURE 9

Convergence diagnostics for hyperparameters and volatilities. (a) 20-th-order sample autocorrelation, (b) inefficiency
factors, (c) Raftery and Lewis’s total number of runs. SeeAppendixB for details

The details of the algorithm adopted in the paper are as follows:

a. For every modelm ∈ M , the output of a preliminary run of the Gibbs sampler is used to construct the following,
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independent proposal distributions for the elements ofθm:

q
(
αm

t | m
)

= N
(
αm

t , 2 · var(αm
t )

)
,

q
(
logσm

t | m
)

= N
(
logσm

t , 2 · var(logσm
t )

)
,

q
(
Qm

| m
)

= I W
(
40 · Qm, 40

)
,

q
(
Wm

| m
)

= I W
(
4 · Wm, 4

)
,

q
(
Sm

1 | m
)

= I W
(
2 · Sm

1 , 2
)

,

·
·
·

q
(

Sm
n−1 | m

)
= I W

(
(n − 1) · Sm

n−1, n − 1
)

.

The variables denoted by the upper bar are posterior means of the preliminary Gibbs sampler, except for
var(αm

t ) andvar(logσm
t ) which are posterior variances. In practice, the preliminary Gibbs run is used to centre

approximate posteriors, that will be adopted as proposal distributions. The approximate posteriors are made more
diffuse than the exact ones on purpose, in order to facilitate the convergence of the algorithm. In this paper the
preliminary Gibbs samplers are based on 2000 iterations, discarding the first 500.

b. Initialize m and draw a value ofθm from the proposal distributionq
(
θm

| m
)
.

c. Draw a candidate couple
(
m′, θm′

)
from qp

(
m′, θm′

)
. This can be easily done by first drawingm′ from a

proposal distributionJ(m′) over the models’ space and thenθm′
from q

(
θm′

| m′
)
.

d. Accept the new couple
(
m′, θm′

)
with probability

a = min

{
p(yT

| m′, θm′
)p(θm′

| m′)p(m′)

p(yT | m, θm)p(θm | m)p(m)

q(θm
| m)J(m)

q(θm′
| m′)J(m′)

, 1

}
,

wherep(yT
| m, θm) is the likelihood, computed through the Kalman filter to integrate out theB’s; p(θm

| m)

is the prior of θm within model m; p(m) is the prior probability of modelm; q(θm
| m) is the proposal

distribution for the parameters, conditional on the model, constructed as above;J(m) is the unconditional
proposal distribution over the models. If the new draw is not accepted, keep the previous couple

(
m, θm)

.
e. Go to c.

APPENDIX D. THE MARKOV CHAIN MONTE CARLO ALGORITHM IN THE CASE OF
SUNRESTRICTED

This appendix presents an extension of the basic MCMC algorithm, produced in order to deal with the case ofS (the
variance covariance matrix of the innovations to the simultaneous relations) left unrestricted. The modification works as
follows: step 2 of the Gibbs sampler is replaced by a Metropolis–Hastings step in which a candidate value for theα’s,
αT∗, is drawn from a proposal distributionfP(αT

| yT , BT , 6T , V). The candidate value is accepted with probability
equal to

min

{
1,

p(αT∗
| yT , BT , 6T , V) fP(αT,−1

| yT , BT , 6T , V)

p(αT,−1 | yT , BT , 6T , V) fP(αT∗ | yT , BT , 6T , V)

}
,

wherep(·) is the posterior ofαT andαT,−1 represents the previous draw ofαT in the chain. If the candidate is rejected,
αT is set to beαT,−1. Step 4 is modified straightforwardly in order to sampleS jointly and not in blocks. As in the Gibbs
sampling case, this procedure allows one to draw from the exact joint posterior of the parameters. The last issue is related
to the choice of the proposal distribution. A natural candidate is the distribution used to sampleαT under the assumption
of Sblock diagonal. Another possibility is to treat (erroneously) the state space form given by (A.2) and (6) as linear and
draw a candidate value forαT using the usual forward and backward recursions. Clearly, if the proposal distribution is
not close to the true density, convergence can be much slower than in the baseline case. In the context of the empirical
application of this paper, with both the proposal distributions suggested above, the acceptance rate was approximately
12%.
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