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Abstract

We use factor augmented vector autoregressive models with time-varying
coefficients and stochastic volatility, to construct a financial conditions index
that can accurately track expectations about growth in US GDP and unemploy-
ment. Time-variation in the model’s parameters allows for the weights attached
to each financial variable in the index to evolve over time. Furthermore, we
develop methods for dynamic model averaging or selection which allow the
financial variables entering into the FCI to change over time. We discuss why
such extensions of the existing literature are important and show them to be so
in an empirical application involving a wide range of financial variables.
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1 Introduction

The recent financial crisis has sparked an interest in the accurate measurement
of financial shocks to the real economy. An important lesson of recent events
is that financial developments, not necessarily driven by monetary policy actions
or fundamentals, may have a strong impact on the economy The need for
policy-makers to closely monitor financial conditions is clear. In response to this
need, a recent literature has developed several empirical econometric methods for
constructing financial conditions indexes (FCIs). These indexes contain information
from many financial variables, and the aim is for policy-makers to use them
to provide early warning of future financial crises. As a result, many financial
institutions (e.g. Goldman Sachs, Deutsche Bank and Bloomberg) and policy-
makers (e.g. the Federal Reserve Bank of Kansas City) produce closely-watched
FCIs. Estimation of such FCIs ranges from using simple weighted averages
of financial variables through more sophisticated econometric techniques. An
important recent contribution is Hatzius, Hooper, Mishkin, Schoenholtz and Watson
(2010) which surveys and compares a variety of different approaches. The FCI
these authors propose is based on simple principal components analysis of a very
large number of quarterly financial variables. Other recent notable studies in this
literature include English, Tsatsaronis and Zoli (2005), Balakrishnan, Danninger,
Elekdag and Tytell (2008), Beaton, Lalonde and Luu (2009), Brave and Butters
(2011), Gomez, Murcia and Zamudio (2011) and Matheson (2011).

In this paper our goal is to accurately monitoring financial conditions through
a single latent (unobserved) FCI. We argue that the construction and use of an
FCI involves three issues: i) selection of financial variables to enter into the FCI,
ii) the weights used to average these financial variables into an index and iii) the
relationship between the FCI and the macroeconomy. There is good reason for
thinking all of these may be changing over time. Indeed, Hatzius et al (2010)
discuss at length why such change might be occurring and document statistical
instability in their results. For instance, the role of the sub-prime housing market in
the financial crisis provides a clear reason for the increasing importance of variables
reflecting the housing market in an FCI. A myriad of other changes may also impact
on the way an FCI is constructed, including the change in structure of the financial
industry (e.g. the growth of the shadow banking system), changes in the response
of financial variables to changes in monetary policy (e.g. monetary policy works
differently with interest rates near the zero bound), the changing impact of financial
variables on real activity (e.g. the role of financial variables in the recent recession
is commonly considered to have been larger than in other recessions) and several
other examples.

Despite such concerns about time-variation, the existing literature does little to
statistically model it. Constant coefficient models are used with, at most, rolling
methods to account for time-variation. Furthermore, many FCI’s are estimated ex



post, using the entire data set. So, for instance, at the time of the financial crisis,
some FCIs will be based on financial variables which are selected after observing
the financial crisis and the econometric model will be estimated using financial
crisis data. The major empirical contribution of the present paper is to develop
an econometric approach which allows for different financial variables to affect
estimation of the FCI, with varying (or zero, when not selected) weight each. That
way, we develop an econometric tool that explicitly takes into account the fact that
each financial crisis has different causes, and is transmitted to the real economy
with varying intensity.

Following a common practice in constructing indexes, we use factor methods.
To be precise, we use Factor-augmented VARs (FAVARs) which jointly model a
large number of financial variables (used to construct the latent FCI) with key
macroeconomic variables. Following the recent trend in macroeconomic modelling
using VARs and FAVARs (Primiceri, 2005; Korobilis, 2013) we work with time-
varying parameter FAVARs (TVP-FAVARs) which allow coefficients and loadings to
change in each period. Additionally, we work with a large set of (TVP-) FAVARs that
differ in which financial variables are included in the estimation of the FCI. Faced
with a large model space and the desire to allow for model change, we follow Koop
and Korobilis (2012) and use efficient methods for Dynamic Model Selection (DMS)
and Dynamic Model Averaging (DMA). These methods forecast at each point in time
with a single optimal model (DMS), or reduce the expected risk of the final forecast
by averaging over all possible model specifications (DMA). We implement model
selection or model averaging in a dynamic manner. That is, DMS chooses different
financial variables to make up the FCI at different points in time. DMA constructs
an FCI by averaging over many individual FCIs constructed using different financial
variables. The weights in this average vary over time.

From an econometrician’s point of view, there is also growing theoretical
evidence in favor of our modelling strategy. Boivin and Ng (2006) show that using
all available data to extract factors (the FCI in our case) is not always optimal in
factor analysis, thus providing support for implementing DMA/DMS to construct
our FCI. Additionally, there is much econometric evidence in favor of structural
instabilities in the coefficients or loadings of macroeconomic and financial factor
models; see, among others, Banerjee, Marcellino and Masten (2006) and Bates,
Plagborg-Mgller, Stock and Watson (2013).

Econometric methods for estimating FAVARs and TVP-FAVARs are well-established;
see, e.g., Bernanke, Boivin and Eliasz (2005), and Korobilis (2013). However,
typical likelihood-based estimation techniques used in the literature (e.g. Bayesian
methods using Markov chain Monte Carlo algorithms) rely on simulation algo-
rithms or complex numerical methods, all of which are computationally extremely
demanding in high dimensions. With our large model space, and our wish
to implement recursive forecasting, it is computationally infeasible to use such
methods. Therefore, our major econometric contribution in this paper lies in the



development of fast estimation methods which are based on the Kalman filter and
smoother and are simulation-free. When dealing with the FAVAR with constant
parameters, our algorithm collapses to the two-step estimator for dynamic factor
models of Doz, Giannone and Reichlin (2011). In the case of estimating models
with time-varying parameters and stochastic volatility (TVP-FAVARSs), our algorithm
provides an extension of Doz, Giannone and Reichlin (2011).

Our results indicate that financial variables do have predictive power for
measures of output growth (GDP and unemployment). Additionally, time variation
in the parameters is extremely important for providing accurate short-run forecasts.
Finally, model averaging and/or selection also result in improvement of forecast
accuracy over using a single model with all the available financial variables. In
the remainder of the paper we examine all these issues in depth, and we provide
evidence by using different forecast metrics and by conducting several robustness
checks.

In particular, in the next Section we introduce formally our modeling framework
and sketch the features of our novel estimation algorithm (complete details are
provided in the Technical Appendix), plus we describe how we implement DMA
or DMS methods in the face of the large number of models we work with. In
Section 3 we present our data, estimates of different FCIs, and results of a recursive
forecasting exercise which is the main tool for evaluating the conditions under
which we can obtain an optimal FCI. Section 4 concludes the paper.

2 Factor Augmented VARs with Structural Instabili-
ties

2.1 The TVP-FAVAR Model and its Variants

Let z; (for t = 1,...,7) be an n x 1 vector of financial variables to be used in
constructing the FCI. Let y; be an s x 1 vector of macroeconomic variables of interest.
In our empirical work y; = (7, g;, us, my, ;) where 7, is the CPI inflation rate, g, is
the growth rate of GDB u; is the unemployment rate, m; is the growth rate of money
supply, and r; is the interest rate!. The p-lag TVP-FAVAR takes the form

Ty = A%Qt"‘)\{ft‘f‘ut

R i Rl o
- -p

!Note that throughout this paper past data up to time t will be denoted by 1 : ¢ subscripts, e.g.,
Datay.; = (Datay, .., Data;). Estimates of time varying parameters or latent states can be made
using data available at time ¢ — 1 (filtering), or time ¢ (updating) or time 7' (smoothing). We
use subscript notation for this such that a,|, is an estimate (or posterior moment) of time-varying
parameter a; using data available through period 7.




where )\ are regression coefficients, A/ are factor loadings, f; is the latent factor
which we interpret as the FCI, ¢, is the intercept and (B, ..., B;,) are VAR
coefficients. wu; and &, are zero-mean Gaussian disturbances with time-varying
covariances V; and @;, respectively. We adapt the common identifying assumption
in the factor literature that V; is diagonal, thus ensuring that u; is a vector of
idiosyncratic shocks and f; contains information common to the financial variables.
This model is very flexible since it allows all parameters to take a different value at
each time ¢. Such an assumption is important since there is good reason to believe
that there is time variation in the loadings and covariances of factor models which
use both financial and macroeconomic data (see Banerjee, Marcellino and Masten,
2006). For recent discussions about the implication of the presence of structural
breaks in factor loadings, the reader is referred to Breitung and Eickmeier (2011)
and Bates, Plagborg-Mgller, Stock and Watson (2013).

Following the influential work of Bernanke, Boivin and Eliasz (2005) our factor
model in (1) consists of two sub-equations: one equation which allows us to extract
the latent financial conditions index (FCI) from financial variables z;; and one
equation which allows to model the dynamic interactions of the FCI with macro-
economic variables y;. This econometric specification is important for two reasons.
First, unlike Stock and Watson (2002) who extract a factor and then use it in a
separate univariate forecasting regression, we use a multivariate system to forecast
macroeconomic variables using the FCI. Thus, we jointly model all the variables in
the system which should allow us to better characterize their co-movements and
interdependence Second, following the recommendations of Hatzius et al. (2010),
we are able to purge from the FCI the effect of macroeconomic conditions. Thus, the
final estimated FCI reflects information solely associated with the financial sector.

In order to complete our model, we need to define how the time varying
parameters evolve. While the specification of all time-varying covariances is
discussed in the following subsection, we define here the vectors of loadings

/ !
A\ = ((/\f)', (A{) ) and VAR coefficients 8, = (c},vec(B,,) ,...,vec(B;,)) to
evolve as multivariate random walks of the form

A= N1+,

By = Bi_1+ 2)

where v; ~ N (0, W;) and 1, ~ N (0, R;). Finally, all disturbance terms presented in
the equations above are uncorrelated over time and with each other.

We call the full model described in equations (1) and (2) the TVP-FAVAR. We
also consider several restrictions on the TVP-FAVAR which result in other popular
multivariate models:

1. Factor-augmented time-varying parameter VAR (FA-TVP-VAR): This specifica-
tion is obtained from the TVP-FAVAR model under the restriction that the



loadings are constant (W, = 0 for all ¢, in which case \;, = \y). In this case
the first equation in (1) describes a typical factor model, while the second
equation is a TVP-VAR augmented with the FCI.

2. Factor-augmented VAR (FAVAR): This model is obtained from the TVP-FAVAR
under the restriction that both \; and f3, are time-invariant (W; = R; = 0).

3. Time-varying parameter VAR (TVP-VAR): This model can be obtained from
the TVP-FAVAR under the restriction that the number of factors is zero (i.e.

fe=0).

4. VAR: This model is obtained when the number of factors is zero and both )\,
and [, are constant over time.

Note that all of the specifications above have heteroskedastic covariances V; and
;. We have also worked with homoskedastic versions of the above models (i.e.
where V; and (), are constant over time). However, in line with the recent VAR
literature (e.g. Clark, 2009), we have found that homoskedastic models are always
dominated in forecasting by their heteroskedastic counterparts. Consequently, all
the results presented in this paper use heteroskedastic models.

2.2 Estimation of a Single TVP-FAVAR

Bayesian estimation of FAVARs (as well as VARs) with time-varying parameters
is typically implemented using Markov Chain Monte Carlo (MCMC) methods,
which sample from the very complex (nonlinear) and multivariate joint posterior
density of the factor f; and the remaining model parameters; see, e.g., Primiceri
(2005), or Del Negro and Otrok (2008). Such Bayesian simulation methods are
computationally expensive even in the case of estimating a single TVP-FAVAR.
When faced with multiple TVP-FAVARs and when doing recursive forecasting (which
requires repeatedly doing MCMC on an expanding window of data), the use of
MCMC methods is prohibitive.?

In this paper, we use a fast two-step estimation algorithm which vastly reduces
the computational burden, and greatly simplifies the estimation of the FCI.
Following Koop and Korobilis (2013) we combine the ideas of variance discounting
methods with the Kalman filter in order to obtain analytical results for the posteriors
of the state variable (f;) as well as the time-varying parameters 6, = (\;,f3,).
To motivate our methods, note first that, as long as both the factor, f;, and the

2To provide the reader with an idea of approximate computer time, consider the three variable
TVP-VAR of Primiceri (2005). Taking 10,000 MCMC draws (which may not be enough to ensure
convergence of the algorithm) takes approximately 1 hour on a good personal computer. Thus,
forecasting at 100 points in time takes roughly 100 hours. These numbers hold for a single small
TVP-VAR, and would be much infeasible for the millions of larger TVP-FAVARs we estimate in this

paper.



loadings parameters, J\;, in the measurement equation are unobserved, application
of the typical Kalman filter recursions for state-space models is not possible.
Therefore, we adapt ideas from Doz, Giannone and Reichlin (2011) and the state-
space literature (Nelson and Stear, 1976) and develop a dual, conditionally linear
filtering/smoothing algorithm which allows us to estimate the unobserved state f;
and the parameters 6, = (\;, 3,) in a fraction of a second.

The idea of using a dual linear Kalman filter is very simple: first update the
parameters 6, given an estimate of f;, and subsequently update the factor f; given
the estimate of #,. Such conditioning allows us to use two distinct linear Kalman
filters or smoothers,* one for §, and one for f,. The main approximation involved
is that f;, the principal components estimate of f; based on xz;;, is used in the
estimation of #;,. Such an approach will work best if the principal component(s)
provide a good approximation of the factor(s) coming from a FAVAR with structural
instabilities. A theoretical proof that this is the case is not available for our
flexible and highly nonlinear specification. However, given the recent findings of
Stock and Watson (2009) and Bates, Plagborg-Mgller, Stock and Watson (2013),
there is strong empirical evidence to believe that this is the case. In particular
Bates, Plagborg-Mpgller, Stock and Watson (2013) conduct extensive Monte Carlo
experiments and show that principal components can support large amount of time
variation in the loading coefficients \;.

Error covariance matrices in the multivariate time series models used with
macroeconomic data are usually modeled using multivariate stochastic volatility
models (Primiceri, 2005), estimation of which also requires computationally
intensive methods. In order to avoid this computational burden, we estimate
(Vi, Qi, Wy, R;) recursively using simulation-free variance matrix discounting meth-
ods (e.g. Quintana and West, 1988). The Technical Appendix provides complete
details. For V; and (); we use exponentially weighted moving average (EWMA)
estimators. These depend on decay factors x; and k,, respectively. Such recursive
estimators are trivial computationally. Additionally, the EWMA is an accurate
approximation to an integrated GARCH model. Such a feature is in line with
authors such as Primiceri (2005) and Cogley and Sargent (2005) who, in the
context of macroeconomic VARs, work with integrated stochastic volatility models.
The covariance matrices W;, R; are estimated using the forgetting factor methods
described in Koop and Korobilis (2012, 2013)* which depend on forgetting
factors k3 and k4, respectively. Decay and forgetting factors have very similar
interpretations. Lower values of the decay/forgetting factors imply that the more
recent observation ¢ — 1, and its squared residual, take higher weight in estimating

3The other alternative being to use a joint nonlinear filter, e.g. the Unscented Kalman Filter
(UKF) and the Extended Kalman Filter (EKF). We have found such filters to be very unstable given
the dimension of our model, and the relatively few time-series observations.

“An EWMA estimation scheme can also be applied to these matrices, but due to their large
dimension we found better numerical stability and precision when using forgetting factors.



V; and @; compared to older observations. The EWMA method implies that
an effective window of k;/2 — 1 (k3/2 — 1) observations is used to estimate V
(Q;), while the forgetting factor approach implies that an effective window of
1/(1 —k3) (1/ (1 — k4)) observations is used to estimate W, (R,). The choice of
the decay/forgetting factors can be made based on the expected amount of time-
variation in the parameters.® Note that the choice kK, = x» = 1 make V; and Q;
constant, while k3 = k4 = 1 imply that W, = R; = 0 in which case \; and 3, are
constant.
A simplified version of our estimation algorithm is given in the following

Algorithm for estimation of the TVP-FAVAR
1. a) Initialize all parameters, Ao, 3, fo, Vo, Qo

b) Obtain the principal components estimates of the factors, f;

2. Estimate the time varying parameters 6, given ﬁ

a) Estimate V}, Q;, R;, and W, using VD

b) Estimate \; and j3,, given (V;, @y, R, W;), using the KFS
3. Estimate the factors f; given 6, using the KFS

where VD stands for “Variance Discounting” and KFS stands for “Kalman filter and
smoother”. The steps above can also be considered to be a generalization of the
estimation steps introduced by Doz et al. (2011) for the estimation of constant
parameter dynamic factor models. In fact, if we fix all time-varying coefficients and
covariances to be constant, our algorithm collapses to the FAVAR equivalent of the
two-step estimation algorithm for dynamic factor models of Doz et. al (2011).

Identification in the FAVAR is achieved in a standard fashion by restricting
V; to be a diagonal matrix. This restriction ensures that the factors, f;, capture
movements that are common to the financial variables, x;, after removing the effect
of current macroeconomic conditions through inclusion of the \/y, term. Further
restrictions usually imposed in likelihood-based estimation of factor models, e.g.
normalizing the first element of the loadings matrix to be 1 (Bernanke, Boivin and
Eliasz, 2005) are not needed here since the loadings )\, are identified (up to a sign
rotation) from the principal components estimate of the factor.

2.3 Dynamic Model Averaging and Selection with many TVP-
FAVARs

In this paper, we work with M;, j = 1,..,J, models which differ in the financial
variables which enter the FCI. In other words, a specific model is obtained using

>Choice of forgetting factors is similar in spirit to choice of prior. Empirical macroeconomists
frequently impose subjective priors on the degree of time variation in their parameters; see for
instance the very informative priors used in the TVP-VARs of Primiceri (2005) and Cogley and
Sargent (2005).



the restriction that a specific combination of financial variables have zero loading
on the factor at time ¢ or, equivalently, that different combinations of columns of z;
are set to zero. Thus, M; can be written as

29 = Ny + MY +

_ _ : 3

|: fgj(z) ‘| = Ct —|—Bt’1 |: i,i(i)i :| 4+ ... +Bt,p |: ?;,z(i)z :| —|—€t ( )
where xij ) is a subset of z;, and ft(j ) is the FCI implied by model M;. Since z; is of
length n, there is a maximum of 2" — 1 combinations® of financial variables that can
be used to extract the FCI.

When faced with multiple models, it is common to use model selection or model
averaging techniques. However, in the present context we wish such techniques
to be dynamic. That is, in a model selection exercise, we want to allow for the
selected model to change over time, thus doing DMS. In a model averaging exercise,
we want to allow for the weights used in the averaging process to change over
time, thus leading to DMA. In this paper, we do DMA and DMS using an approach
developed in Raftery et al (2010) in an application involving many TVP regression
models. The reader is referred to Raftery et al (2010) for a complete derivation and
motivation of DMA. Here we provide a general description of what it does.

The goal is to calculate 7, ; which is the probability that model j applies
at time ¢, given information through time ¢ — 1. Once 7, for j = 1,..,J are
obtained they can either be used to do model averaging or model selection. DMS
arises if, at each point in time, the model with the highest value for 7,;_, ; is used.
Note that 7y, ; will vary over time and, hence, the selected model can switch over
time. DMA arises if model averaging is done in period ¢ using m,;_q; for j =1,..,J
as weights. The contribution of Raftery et al (2010) is to develop a fast recursive
algorithm for calculating ;1 ;.

Given an initial condition, 7o ; for j = 1.,,.J, Raftery et al (2010) derive a
model prediction equation using a forgetting factor a:

o
Ti—1jt—1,5

T _a ;
>t T1ft—1,1

4

Ttt—1,5 =

and a model updating equation of:

Wt\t—l,jfj (Datat\Datal;t,l)
Tt|t,j = 7 ) (5)
Yoo Te—1f1 (Datag| Datay—1)
where f; (Data¢|Datay..—1) is a measure of fit for model j. Many possible measures
of fit can be used. Since our focus is on the ability of the FCI to forecast y;, we

5We remove from the model set the model with zero financial variables, i.e. with no FCI extracted.



set as a measure of fit the predictive likelihood for the macroeconomic variables,
pj (ye|Datay.;—1).

The factor 0 < o < 1 is a forgetting factor which, similar to the decay/forgetting
factors (k1, ko, K3, k4) used for estimating the error covariance matrices, tunes how
rapidly switches between models should occur. Lower values of « allow for an
increasing switching between the number of variables that enter the FCI each time
period. If o = 0.99, forecast performance five years ago receives 80% as much
weight as forecast performance last period whereas @ = 1 leads to conventional
Bayesian model averaging implemented one period at a time on an expanding
window of data.

3 Empirics

3.1 Data and Model Settings

We use 20 financial variables which cover a wide variety of financial considerations
(e.g. asset prices, volatilities, credit, liquidity, etc.). These are gathered from
several sources. All of the variables (i.e. both macroeconomic and financial
variables) are transformed to stationarity following Hatzius et al (2010) and many
others. The Data Appendix provides precise definitions, acronyms, data sources,
sample spans and details about the transformations. Our data sample runs from
1959Q1 to 2012Q1. Notice that all of our models use four lags and, hence, the
effective estimation sample begins in 1960Q1. The five macroeconomic variables
that complete our model are the Consumer Price Index (all items), Gross Domestic
Product, unemployment rate, M1 money stock, and the Federal funds rate. All of
these series are observed from 1959Q1, are seasonally adjusted, and are provided
by Federal Reserve Economic Data (FRED). Macro variables which are not already
in rates (CPI, GDB M1) are converted to growth rates by taking first log-differences.

Some of the financial variables have missing values in that they do not begin
until after 1959Q1. In terms of estimation with a single TVP-FAVAR model, such
missing values cause no problem since they can easily be handled by the Kalman
filter (see the Technical Appendix for more details). However, when we are using
multiple models, there is a danger that in a specific model the value of the FCI in a
period (e.g. 1959Q1-1982Q1) has to be extracted using financial variables which all
have missing values for that same period. In this case estimation is impossible and
we introduce a simple restriction to prevent such estimation issues. In each model
we always include the S&P500 in the list of financial variables, a variable which is
observed since 1959Q1, which means that at a minimum the FCI will be extracted
based on this single financial variable. This restriction implies that the S&P500
is not subject to model averaging/selection and we instead perform DMA/DMS
using the remaining 19 financial variables. Therefore, we have a model space of

10



219=524,288 TVP-FAVARs (as well as 524,288 FA-TVP-VARs, etc.). We remind the
reader that a list of the different specifications estimated (and their acronyms) is
given at the end of Section 2.1.

To summarize, our models which produce an FCI are the TVP-FAVARs, FA-TVP-
VARs, FAVARs. In our forecasting exercise, for the purpose of comparison, we also
include some forecasting models which do not produce an FCI. These are the VARs
and TVP-VARs. With these model spaces, we investigate the use of DMS, DMA and
a strategy of simply using the single model which includes all 20 of the financial
variables.

Some authors (e.g. Eickmeier, Lemke and Marcellino, 2011) use existing FCIs
(i.e. estimated by others) in the context of a VAR model. In this spirit, we also
present results for VARs and TVP-VARs where the factors are not estimated from the
factor model equation in (1), /rather they are replaced with an existing estimate.
To be precise, we use (;;g, ﬁ) as dependent variables for different choices of ﬁ
Table 1 lists these choices from a set of financial conditions indexes and financial
stress indexes” maintained by Federal Reserve Banks. Again, these models are a
restricted special case of our TVP-FAVAR and estimation proceeds accordingly. The
error covariance matrix is modelled in the same manner as the FAVAR. We use an
acronym for these VARs such that, e.g., VAR (FCI 3), is the VAR involving the five
macroeconomic variables and the Chicago Fed National FCI.

Table 1. Financial Conditions and Stress Indexes

Name Acronym Source Sample

St. Louis Financial Stress Index FCI 1 St Louis Fed 1993Q4 - 201201
Kansas City Fed Financial Stress Index FCI 2 Kansas Fed 199001 - 2012Q1
Cleveland Fed Financial Stress Index  FCI 3 Cleveland Fed 1991Q3 - 20120Q1
Chicago Fed National FCI FCI 4 Chicago Fed 19730Q1 - 2012Q1

3.2 Choice of hyperparameters and initial conditions

In this section we outline the setting of various hyperparameters and initial
conditions. In order to avoid data-mining issues, that is do choices which work
well after observing the results, all our benchmark choices that apply in the next
two subsections are fairly non-informative. In the Appendix we also implement a
sensitivity analysis by means of eliciting priors based on a training data sample,
thus extending the recommendations of Primiceri (2005) to our FAVARs.

The first step is to set the initial conditions for the factor f; (FCI), the time-
varying parameters )\, 3,, the time-varying covariances V;, @;, and, for doing DMA

’Financial Stress Indexes (FSIs) are usually identical to FCIs, but have opposing signs: a decrease
in financial conditions means increased financial stress, and vice-versa.

11



and DMS, we must specify 7o ;, j = 1,..., J. These initial conditions are set to the
following (relatively non-informative) values

fO ~ N (07 4) )
)\0 ~ N (0,4 X [n(s+1)) ,
Bo ~ N(0,Varn)

Vo = 1x1,,
Qo = 1x I,
1
Moo = 7

where V), is a diagonal covariance matrix which, following the Minnesota prior
tradition, penalizes more distant lags and is of the form

4, for intercepts
4/r?, for coefficient on lag r

Vv = { 5 (6)

where » = 1,..,p denotes the lag number. Note that estimates of IV, and R; are
proportional to the respective state covariance matrices obtained from the Kalman
filter, therefore there is no need to initialize these matrices; see the Technical
Appendix for more details.

Regarding the decay and forgetting factors we have introduced in our model it
is worth noting that we can estimate these from the data. However, computation
increases substantially (we need to evaluate or maximize the likelihood for each
combination of the various factors) and, as shown in Koop and Korobilis (2013),
the existence of value added in forecasting performance from such a procedure
is questionable. Given these considerations, we choose to fix the values of the
decay/forgetting factors, but investigate sensitivity to their choice in the Appendix.

For the decay factors ki, ks which control the variation in the covariance
matrices, we fix these to the value 0.96. Such value provides volatility estimates
which are quite close to the ones expected by integrated stochastic volatility
models that have been used extensively in the Bayesian VAR and FAVAR literature
(Primiceri, 2005; Korobilis, 2013). For the forgetting factors k3, k4, we follow
the “business as usual prior” approach of Cogley and Sargent (2005) and assume
that changes each period are relatively slow and stable under the random walk
specification in equation (2). In order to achieve this slow time variation in the
coefficients, we set k3, k4 = 0.99, a setting we use in all TVP-FAVAR and TVP-VAR
specifications. As described in Section 2.2, restricted versions of our general model
can be obtained by setting the forgetting factors to one. For instance when k3 = 1
but x4 = 0.99, we obtain the FA-TVP-VAR model.

Finally, we need to choose our prior beliefs about model change. The value
of the forgetting factor o determines how fast model switches occur, and thus we
use two values: « = 1 which implies that we are implementing Bayesian model
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averaging (BMA) given data up to time ¢; and = 0.99 which implies that we
implement dynamic model averaging (DMA) with relatively slowly varying model
probabilities.

3.3 Estimates of the Financial Conditions Index

Before we proceed to the forecasting exercise, it is important to understand
how both our estimation algorithm and model averaging work in the context of
estimating an FCI. The results in this section are smoothed, that is estimated using
the full sample of data from 1959Q1 - 2012Q1.

Figure 1 shows the factor estimates simply using all 20 financial variables
without any model selection of model averaging being done. The estimates
from the FAVAR, the FA-TVP-FAVAR and the TVP-FAVAR models are quite similar,
especially during the first part of our sample. However. differences do exist, in
particular specifically before, during, and after the recent financial crisis. Figure
1 also plots the principal component (PC) estimate of the 20 financial variables,
and substantive differences are found between this and any of the FAVAR-based
estimates. The FAVARs allow for time-varying covariances and VAR dynamics of the
factor, while the principal component is a better approximation of factors coming
from a homoskedastic static factor model. This characteristic explains why the
FAVAR and PC estimates are on average similar, but differ more substantially at
some peaks and troughs.

Figure 2 shows the impact of model averaging and selection on the estimate of
the FCI, focussing on the TVP-FAVARs (but also including DMA done on the FAVARSs
for comparison). Although the broad patterns in the FCIs plotted in Figure 2 are
similar, there are appreciable differences, particularly in the mid- to late 1980s and
in the run-up to the financial crisis. DMA and BMA estimates based on the TVP-
FAVARs tend to be quite similar to one another except for some periods early on
in our sample. DMA estimates using the FAVARs are also quite similar to these,
except for the run-up to the financial crisis. These are also, on average, similar to
the FCI produced by the single TVP-FAVAR in Figure 1. However, after 1983, they
differ quite substantially from the FCI produced by DMS. There is also a period of
divergence of a lesser magnitude in the run-up to the financial crisis.

In Figure 3 we perform a comparison of the FCI constructed from dynamic model
averaging of TVP-FAVAR models with the four existing FCIs maintained by four
Federal Reserve Banks. First note that some of the indexes are actually measuring
financial stress, or define tighter financial conditions using a positive value. For
such FCI, we multiply by minus one, so that during the peak of the crisis all indexes
are negative and, thus, comply with the shape of our FCIs. Additionally, to improve
comparability, we standardize all the FCIs to have mean zero and variance one. If
we standardize in this manner, it is interesting to note that it is our FCI (using DMA
on the TVP-FAVARs) which achieves the minimum value in the depth of the financial
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crisis. In practice, what matters is the relative decrease of financial conditions
during the recent financial crisis compared to normal periods, or other crises. In
this regard, it is interesting to note that the Chicago Fed index (NFCI) predicts that
the crises of the 1970s were deeper than the recent financial crisis. The Cleveland
Fed index does not achieve a single minimum during the recent financial crisis,
rather it has an inverted bell shape. These differences are quite substantial among
all these FClIs, and (as we shall see) can have strong impact in forecasting.

Figures 1 through 3 compare a range of different FCI estimates. At this stage,
we express no view on whether on whether any FCI is better or worse than
any other. The key finding we stress is that, although they are similar to one
another in many respects, substantive differences can occur. These differences
are most notable when we compare our TVP-FAVAR or FAVAR-based estimates to
conventional estimates (i.e. either PC of those produced by Federal Reserve Banks).
Next in magnitude are the differences we find when comparing DMA and DMS
approaches. Lowest in magnitude are the differences between TVP-FAVAR and
FAVAR approaches indicating time variation in parameters is playing only a small
role.

FCls estimated using different models/methods
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Figure 1. FCIs constructed from several versions of the heteroskedastic
factor-augmented VAR model with all 20 financial variables used (no model
averaging/selection in the loadings). For comparison, the principal component of
the 20 financial variables is also plotted.

14



FCI implied by DMA/DMS
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Figure 2. FCIs implied by BMA, DMA and DMS on the TVP-FAVARs (with DMA
results for FAVARs provided for comparison)
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Figure 3. The FCI from the TVP-FAVAR with DMA compared to existing financial
indexes maintained by four regional US central banks.
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To provide some additional insight on what DMA is doing, we present Figures
4 and 5 which shed light on the number of variables selected when we do DMA
or DMS on the TVP-FAVARs. In particular, Figure 4 calculates the expected number
of variables used to extract the FCI at each point in time. If we denote by n; the
number of variables which load on the FCI under model }/;, then we calculate each
time period the following expectation®

J
E (ntDMA) — (Z 7Tt|t,j X ’I’LJ> —1.
J=1

Figure 4 shows that the number of variables used in DMA has increased over time
until the late 90s, then dropped abruptly in early to mid 2000s, while it increased
gradually until the peak of the recent financial crisis. DMA in the TVP-FAVAR implies
that, in addition to the S&P 500, the FCI should include roughly 9 to 14 variables.

Figure 5 provides evidence on which variables receive most weight in the DMA
procedure (or are selected by DMS). The numbers in each panel of this figure are
the total probability DMA attaches to models which contain the variable named in
the title on the panel. A pattern worth noting is that, consistent with Figure 4,
many financial variables become important during and after the financial crisis. It
is also worth noting that there is substantial variable switching. That is, there are
a few variables which enter then abruptly leave (or vice versa) the FCI. In contrast
to some of our previous work using regression models,’ we find that DMA weights
can change rapidly over time.

8We subtract one since the S&P500 variable is always included in all models.

See Koop and Korobilis (2012), but also much of the Bayesian model averaging literature (e.g.
the determinants of growth literature discussed in papers such as Eicher, Papageorgiou and Raftery,
2011).
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Figure 4. Average number of variables used to extract the FCI at each point in time
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Figure 5. Time-varying probabilities of inclusion to the final FCI for each of the 19
financial variables (S&P500 is always included; see Section 3.1). Zero probabilities
at the beginning of the sample for some of the variables correspond to periods of
missing observations.

3.4 Forecasting

In this section, we investigate the performance of a wide range of models and
methods for forecasting GDP growth and the unemployment rate. Our forecast
evaluation period is 1990Q1 through 2012Q1-A for h = 1,2, 3, 4 quarters ahead.!®
Evaluation of forecast accuracy is based on the mean squared forecast error (MSFE)
divided by the MSFE produced by a TVP-VAR involving the five macroeconomic
variables (not including any FCI).

Table 2 presents forecasting results for various FAVARs with or without time-
variation in parameters and with and without DMA/DMS including: i) a VAR
and TVP-VAR on the vector y; of macroeconomic variables alone (no FCI added),
ii) a VAR augmented with a principal component from all 20 financial variables,
iii) FAVARs with all 20 financial variables included at all times (no DMA/DMS);
iv) FAVARs with recursive BMA/BMS (o = 1), and v) FAVARs with DMA/DMS
(v = 0.99). The main story is that our methods, which allow for time-variation in

10Forecasts for h > 1 are iterated.
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parameters and the way model averaging or selection is done, forecast best. MSFEs
are substantially lower than simple VAR or TVP-FAVARs or even the VAR augmented
with a principal components estimate of the FCI.

We make the following observations:

e moving from the naive principal component to a specification which explicitly
models factor dynamics and interaction with macro variables (such as our
FAVAR with all 20 variables included), has large benefits for GDP growth rate
forecasts; these benefits are less clear for unemployment rate forecasts.

e moving from the FAVAR to the FA-TVP-VAR or the full TVP-FAVAR, whether
we also consider model averaging or not, has large benefits in forecasting.
E.g. moving from the FAVAR (all variables) to the TVP-FAVAR (all variables)
decreases the relative MSFE of GDP growth by 11%, while moving from
the FAVAR (BMA) to the TVP-FAVAR (BMA) decreases the relative MSFE of
unemployment by 9%.

¢ allowing for DMA/DMS or BMA/BMS also improves forecasting performance
by up to 7-8% for GDP and up to 5% for unemployment, compared to the
same model with all variables included. E.g. the difference of the relative
MSFE of the FAVAR (all variables) with the FAVAR (BMA) is 4% for GDP and
3% for unemployment.

e selecting the best model, instead of averaging, seems to be the best strategy
for GDP forecasts for h = 1 and 2 quarters ahead.

Table 2: Performance of our FCI based on various FAVAR models, 1990Q1 - 2012Q1

GDP UNEMPLOYMENT
h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4
VAR (no FCI) 1.27 1.29 1.10 1.02 221 225 2.06 1.90
TVPVAR (no FCI) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAR + Principal Component 1.06 1.17 1.18 1.31 0.89 093 0.97 1.03

FAVAR (all variables) 0.92 1.03 1.07 1.07 0.93 096 1.00 1.03
FA-TVP-VAR (all variables) 0.81 090 0.95 0.99 0.88 0.83 083 0.85
TVP-FAVAR (all variables) 0.81 0.90 0.96 1.00 0.86 0.81 0.81 0.84

FAVAR (BMA) 0.88 098 1.02 1.03 0.90 0.94 0.98 1.02
FAVAR (BMS) 0.84 0.95 1.01 1.04 0.87 0.88 0091 0.96
FA-TVP-VAR (BMA) 0.78 0.85 091 0.96 0.82 0.79 0.81 0.84
FA-TVP-VAR (BMS) 0.75 0.84 0.92 0.98 0.80 0.77 0.78 0.81
TVP-FAVAR (BMA) 0.77 0.85 091 0.96 0.81 0.78 0.79 0.82
TVP-FAVAR (BMS) 0.77 0.85 0.93 0.98 0.82 0.78 080 0.82
FAVAR (DMA) 0.88 098 1.02 1.03 0.90 0.93 0.98 1.01
FAVAR (DMS) 0.85 0.96 1.03 1.05 092 098 1.03 1.08
FA-TVP-VAR (DMA) 0.78 0.85 091 0.95 0.82 0.80 0.81 0.84
FA-TVP-VAR (DMS) 0.74 0.83 0.90 0.97 0.82 0.78 0.79 0.82
TVP-FAVAR (DMA) 0.77 0.85 091 0.96 0.81 0.78 0.80 0.83
TVP-FAVAR (DMS) 0.75 0.84 0.93 0.99 0.82 0.77 0.79 0.82

Note: FAVAR is the simple version of our model with all parameters constant. FA-TVP-VAR extends the FAVAR by adding time-variation in the VAR part (evolution of the factors).
TVP-FAVAR is the full model where both VAR coefficients and loadings are time-varying. Dynamic Model Averaging (DMA) is implemented with forgetting factor o = 0.99.

Bayesian Model Averaging (BMA) is equivalent to DMA using o = 1.
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Judging the performance of point forecasts based on MSFE is only part of
the picture regarding model performance. Predictive likelihoods can be used
to evaluate the forecasting performance of the entire predictive distribution. In
the present context, examination of predictive likelihoods is of particular interest
since TVP models have many more parameters than their constant parameter
variants, implying higher estimation error and, thus, higher forecast uncertainty.
Furthermore, model averaging, whether done in a time-varying fashion or not,
is expected to reduce uncertainty surrounding forecasts (see, e.g., Hoeting et al.
1999) relative to methods which use a single model.

Figure 6 contains several panels which plot the one-step ahead log-predictive
likelihood (log-PL) of GDP growth for various models and methods for the forecast
evaluation period 1990Q1-2012Q1. Note that TVP-FAVAR(DMA) is included in most
panels to aid in visualizing the differences between the approaches. A major story of
this figure is that doing DMA or DMS does lead to large improvements in predictive
likelihoods, but this improvement happens mainly since the financial crisis.

It is also worth noting that time-variation in the parameters makes little
difference in terms of predictive likelihoods when we are working with a single
model including all 20 financial variables. However, time-variation in parameters
does matter for DMA (e.g. TVP-FAVAR(DMA) almost always has higher predictive
likelihoods than FAVAR (DMA)).

Remember that, with DMS we choose the model that has forecast best in the
immediate past. While this strategy is optimal in normal times, when a rare event
occurs this single best model might overfit past observations. The bottom left panel
of the figure illustrates this. The log-PL of DMS is consistently above the log-PL
of DMA (for the case of the TVP-FAVAR), but it is appreciably lower during the
peak of the crisis. By averaging over many models, DMA can reduce the risk of
this happening. Nevertheless, due to the time-varying nature of the DMA/DMS
probabilities, the DMS algorithm adapts quickly after the deterioration in forecast
performance of 2008Q4 and, after this point, its log-PL is again slightly higher than
that of DMA. Finally, the bottom right panel of Figure 6 compares the log-PL of the
full TVP-FAVAR model with and without DMA. In Table 2 we saw that DMA reduces
MSFE, here we see if also leads to improved predictive likelihoods.
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Figure 6. One step ahead (h = 1) cumulative sum of log-predictive likelihoods of
GDP growth rate during the whole evaluation period 1990Q1-2012Q1, based on
the various models we estimate.

Also of interest is the performance of our approach to VAR forecasts augmented
with an existing FCI (see Table 1). Before doing so, we note that such comparisons
are extremely difficult since different indexes are based on different assumptions,
data transformations, frequencies and sample sizes. The earliest common starting
date for the FCIs is 1994Q1 and, accordingly, we re-estimate our TVP-FAVAR (DMA)
using data from this point and use 2000Q1 - 2012Q1-A as our forecast evaluation
period.

Table 3 presents the MSFEs for FCI augmented VAR and TVP-VAR models, as well
as the VAR and TVP-VAR with no FCI (just the five macro variables), for h = 1,2,3,4
and for GDP and unemployment. All MSFEs are relative to the MSFE of the TVP-
FAVAR (DMA) which is standardized to be one. Our index is doing very well in
forecasting the unemployment rate, and is doing better than most indexes (the
exception being the Chicago Fed FCI, in terms of 1-step ahead GDP forecasts). Note
that the VAR and TVP-VAR models are used to construct the dynamics of our FCI
(from the FAVARSs) as well as construct forecasts of the macroeconomic variables,
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while the existing FCIs are constructed using different methods. This immediately
gives an advantage to our FCI, however, this doesn’t reduce the importance of the
results presented in Table 3.

Table 3: Performance of our FCI compared to other FCIs, 2000Q1 - 2012Q1
GDP UNEMPLOYMENT

h=1 h=2 h=3 h=4 h=1 h=2 h=3 h=4

TVP-FAVAR (DMA) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAR (no FCI) 1.59 1.38 1.10 0.97 3.03 3.41 294 2.53
TVP-VAR (no FCI) 1.28 1.09 1.05 0.97 1.23 1.33 1.27 1.21
VAR (FCI 1) 1.22 1.15 1.11 0.91 1.66 236 2.25 1.99
TVP-VAR (FCI 1) 1.07 0.84 0.93 1.23 1.07 1.27 1.11 0.95
VAR (FCI 1) 1.04 1.24 1.16 1.01 1.95 224 221 218
TVP-VAR (FCI 2) 1.06 0.89 0.92 0.83 1.09 0.99 0.94 0.93
VAR (FCI 2) 1.28 1.38 1.19 0.97 1.52 1.59 144 1.27
TVP-VAR (FCI 3) 142 1.2 118 1.1 1.03 0.97 091 0.89
VAR (FCI 4) 092 1.05 1.05 0.97 1.13 1.22 1.19 1.12

TVP-VAR (FCI 4) 095 0.83 0.89 0.88 1.32 145 146 1.44

4 Conclusions

In this paper, we have argued for the desirability of constructing a dynamic financial
conditions index which takes into account changes in the financial sector, its
interaction with the macroeconomy and data availability. In particular, we want
a methodology which can choose different financial variables at different points in
time and weight them differently. We develop DMS and DMA methods, adapted
from Raftery et al (2010) and others, to achieve this aim.

Working with a large model space involving many TVP-FAVARs (and restricted
variants) which make different choices of financial variables, we find DMA and
DMS methods lead to improve forecasts of macroeconomic variables, relative to
methods which use a single model. This holds true regardless of whether the single
model is parsimonious (e.g. a VAR for the macroeconomic variables) or parameter-
rich (e.g. an unrestricted TVP-FAVAR which includes the same large set of financial
variables at every point in time). The dynamic FCIs we construct are mostly similar
to those constructed using conventional methods. However, particularly at times of
great financial stress (e.g. the late 1970s and early 1980s and the recent financial
crisis), our FCI can be quite different from conventional benchmarks. The DMA and
DMS algorithm also indicates substantial inter-temporal variation in terms of which
financial variables are used to construct it.

22



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Aiolfi, M., Capistran, C., Timmermann, A., 2010. Forecast combinations. In:
Michael P Clements and David E Hendry (Eds). The Oxford Handbook of
Economic Forecasting. Oxford University Press, USA.

Balakrishnan, R., Danninger, S., Elekdag, S., Tytell, 1., 2009. The transmission
of financial stress from advanced to emerging economies. IMF Working Papers
09/133, International Monetary Fund.

Banerjee, A., Marcellino, M., Masten, 1., 2008. Forecasting macroeconomic
variables using diffusion indexes in short samples with structural change.
CEPR Discussion Papers 6706, C.E.PR. Discussion Papers.

Bates, B. J., Plagborg-Mgller, M., Stock, J. H., Watson, M. W, 2013.
Consistent factor estimation in dynamic factor models with structural in-
stability. Journal of Econometrics, Available online 17 April 2013, doi:
10.1016/j.jeconom.2013.04.014

Beaton, K., Lalonde, R., Luu, C., 2009. A financial conditions index for the
United States. Bank of Canada Discussion Paper, November.

Bernanke, B., Boivin, J., Eliasz, P, 2005. Measuring monetary policy: A factor
augmented vector autoregressive (FAVAR) approach. Quarterly Journal of
Economics 120, 387-422.

Boivin, J., Ng, S., 2006. Are more data always better for factor analysis?
Journal of Econometrics 132, 169-194.

Brave, S., Butters, R., 2011. Monitoring financial stability: a financial
conditions index approach. Economic Perspectives, Issue Q1, Federal Reserve
Bank of Chicago, 22-43.

Breitung, J., Eickmeier, S., 2011. Testing for structural breaks in dynamic
factor models. Journal of Econometrics, 163(1), 71-84.

Clark, T., 2009. Real-time density forecasts from VARs with stochastic volatil-
ity. Federal Reserve Bank of Kansas City Research Working Paper 09-08.

Cogley, T., Sargent, T. J., 2005. Drift and volatilities: Monetary policies and
outcomes in the post WWII U.S. Review of Economic Dynamics 8(2), 262-302.

Del Negro, M., Otrok, C., 2008. Dynamic factor models with time-varying
parameters: Measuring changes in international business cycles. University of
Missouri Manuscript.

23



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Doz, C., Giannone, D., Reichlin, L., 2011. A two-step estimator for large
approximate dynamic factor models based on Kalman filtering. Journal of
Econometrics 164, 188-205.

Eicher, T. S., Papageorgiou, C., Raftery, A. E., 2011. Default priors and
predictive performance in Bayesian model averaging, with application to
growth determinants. Journal of Applied Econometrics 26, 30-55.

Eickmeier, S., Lemke, W., Marcellino, M., 2011. The changing international
transmission of financial shocks: evidence from a classical time-varying
FAVAR. Deutsche Bundesbank, Discussion Paper Series 1: Economic Studies,
No 05/2011.

English, W., Tsatsaronis, K., Zoli, E., 2005. Assessing the predictive power
of measures of financial conditions for macroeconomic variables. Bank for
International Settlements Papers No. 22, 228-252.

Giannone, D., Reichlin, L., Sala, L., 2005. Monetary Policy in Real Time. NBER
Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-
224, National Bureau of Economic Research, Inc.

Gomez, E., Murcia, A., Zamudio, N., 2011. Financial conditions index: Early
and leading indicator for Colombia? Financial Stability Report, Central Bank
of Colombia.

Hatzius, J., Hooper, P, Mishkin, E, Schoenholtz, K., Watson, M., 2010.
Financial conditions indexes: A fresh look after the financial crisis. NBER
Working Papers 16150, National Bureau of Economic Research, Inc.

Hoeting, J. A., Madigan, D., Raftery, A. E., Volinsky, C. T., 1999. Bayesian
Model Averaging: A Tutorial. Statistical Science 14, 382-417.

Karny, M., 2006. Optimized Bayesian Dynamic Advising: Theory and Algo-
rithms, Springer-Verlag New York Inc.

Kaufmann, S., Schumacher, C., 2012. Finding relevant variables in sparse
Bayesian factor models: Economic applications and simulation results.
Deutsche Bundesbank Discussion Paper No 29/2012.

Koop, G., Korobilis, D., 2012. Forecasting inflation using dynamic model
averaging. International Economic Review 53, 867-886.

Koop, G., Korobilis, D., 2013. Large time-varying parameter
VARs. Journal of Econometrics, Available online 17 April 2013,
dx.doi.org/10.1016/j.jeconom.2013.04.007.

24



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Korobilis, D., 2013. Assessing the transmission of monetary policy shocks
using time-varying parameter dynamic factor models. Oxford Bulletin of
Economics and Statistics 75, 157-179.

Kulhavy, R., Kraus, E, 1996. On duality of regularized exponential and linear
forgetting. Automatica 32,1403-1416.

Litkepohl, H., 2005. New Introduction to Multiple Time Series Analysis.
Springer: New York.

Matheson, T., 2011. Financial conditions indexes for the United States and
Euro Area. IMF Working Papers 11/93, International Monetary Fund.

Nelson, L., Stear, E., 1976. The simultaneous on-line estimation of parameters
and states in linear systems. IEEE Transactions on Automatic Control 21, 94 -
98.

Primiceri. G., 2005. Time varying structural vector autoregressions and
monetary policy. Review of Economic Studies 72, 821-852.

Quintana, J.M., West, M., 1988. Time Series Analysis of Compositional Data.
In Bayesian Statistics 3, (eds: J.M. Bernardo, M.H. De Groot, D.V. Lindley and
A.EM. Smith), Oxford University Press.

Raftery, A. E., Karny, M., Ettler, P, 2010. Online prediction under model
uncertainty via dynamic model averaging: Application to a cold rolling mill.
Technometrics 52, 52-66.

Schorfheide, E, Wolpin, K. E., 2012. On the Use of Holdout Samples for Model
Selection. American Economic Review - Papers and Proceedings 102(3), 477-
481.

Stock, J. H., Watson, M. W,, 2002. Macroeconomic forecasting using diffusion
indexes. Journal of Business & Economic Statistics 20,147-162.

Stock, J. H., Watson, M. W,, 2009. Forecasting in dynamic factor models
subject to structural instability. In: Jennifer Castle and Neil Shephard (Eds),
The Methodology and Practice of Econometrics: A Festschrift in Honour of
Professor David Hendry, Oxford: Oxford University Press.

25



10210T - 10861 n I uonemIS [eUEUL] U] 93ueyD pa1oadxy A3AMS URSIYDIA PIN 0T
10210Z - €D066T bt I SUEBO[ 2111S [ 10§ SPIEpUEls Suruaiy3n syueq Jo 93e1usdIdd :SO0TS INODSALS 61
10210T - 106561 E| S SUIpUEISINQ ‘PIZNLINISS PUY PaUMQ HPIID ISWINSUOD [BI0], TSTVIOL 8T
102102 - 107002 a I PIA ‘WRId SAD - AS XdpUl SAD 103199S syjueq SN adNvdasn L1
10210T - €09861 d I xapu] Ame[oA (00SdBS + 001dR8S) HOID XIA+OXA 9T
102102 - 208861 d I (AOIN) xopuf ArefoA suondQ AmseaiL, YIUON-aUQ YIUAT [[LLIDI xapul HAOW ST
10210T - 1O¥661 q I XapuJ ANPOWWIo) YD SILIHJO/SISIMNSY UOSWOY], Xopul XD T
10210C - TO1L61 d S X9pu] 211d 000S IMYS[IM Yd00OSTIIM €1
102102 - 107661 d I V4 SAPOOIA - P[OIX 2ADDSJH IT 19ISRIA P[RIA YSTH SN YIUAT LIS Viod peaxds ppRIAYSIH  ¢1T
10210Z - 10961 d S [9A9T X9pU] "S’[] XSPUJ 9DUBULIOJIS] UBOT SWOH xapu] IJHNVOT 1T
102102 - ZOTL61T d T peaids [11g Amseai]/1aded [eDISWWOY) [BIDURUL] IUON-¢ peaids 1oded [eniowwo) (T
10210T - €09L6T E| I pea1ds PIRIX AINSeal], YIUON-E/TBIX-T peaids wig/Az 6
102102 - €09/61 d I pes1dg p[aIX AINSeai], Je9k-7/Tea-0T peards £Z/0T 8
102102 - ¥O1861 d I a1ey [[1g Asesi], wg - JOdIT we pesxds q4L £
10210T - 10TL61T d I UROT YIUOI § SOINY MIN ‘SUBOT JUSW[[RISU] JSWNSUOD UQ 978y S0UBUL] SNSYOLNVIDINYAL 9
102107 - ¥O¥861 a T $98e3110]A [B10], {SONLINIAS PIYIBG-19SSY JO SIONSS] (98e3110IN) s1onss] SV §
102102 - 106S61 i 1 918y AInseai], AQT - 218y 9883110\ [EUONIUSAUOY) AQE peaids a3edioN A0 ¥
10210T - 106561 E| S Surpuelsing 199 3TN AIPAID PIOYISNOH :SAWI[Ier] :10103S P[OYISNOH IGIaND €
102102 - 1O6S6T M T (T:€46T Ul SOYXH OL PayulT) Xpu] Je[jo( SoUALIND IOfe]A [EUIION qHd HLNAXIML ¢
102102 - TO6S61 d S X9puJ 2911d 201§ 00S d*8S 008dS 1

odures 92IN0S  9pOI, uondiisaq JIUOWIRUIN ON
3urseda10J 10 pasn Sa[qelIeA O TV 9[qRL
' A\EOmuw\SE \Sﬁu.ﬂouwuﬁﬁm.g\\dﬁﬂv UOSIBAA M JIe]N - M mA\Sﬁm.ﬂuwaﬂumﬁmu@%\\“Quﬁb

URSIUYDIIAl JO ANSISATUN - ) (/A0S 9AIISII[RISPIFMMM//:d1I) WISAS SAISSIY [BIOPS] 93 JO SIOUISA0D JO pleoy -
A {(/[eAo3e/yd Trun-ooymmm//:dny) [eAoH Nwy - H {(/ZPpa1j/310°Pajsmois-ydieasal//:diy) eie( dIWOU0YY dAIISIY
[eI9pay - 4 ‘wreaxnsele( - ( 319quIOO[d - g :9I& S9POD 9, "9[qRLIBA IBD JO 92INO0S 3] SILIDSIP UWN[0D Y 3], "S9IUD
-I9JJ1p 30[ 1SILJ SN ‘G=9POJ], PUB (S[OAS]) PIUWLIOJSURIIUN SUTRUISI S[qRLIBA ‘T =9PO0J], :9[RLIBA [JJBD 10J UOLIRULIOJSURI)
A11euonels a1 SMOUSs 9pod], ‘d[qeLIeA [Jed 01 parjdde usaq aARY UDIYM (S9PO],) SOPOD UOIBULIOJSURI) AJLIRUONIRIS 9]
$9QLIDSIP UWN[0D YIIN0J Y[, “X9PU] SUOIIIPUOY) [BIDUBUI, INO JOBIIXD 0] PIST 9M SILISS 3] S9GLIDSIP S[qe1 SUIMO[[0] 3],

xipuaddy eje(q 'y

26



B. Technical Appendix

In this appendix, we describe the econometric methods we use to estimate a TVP-
FAVAR (and restricted versions of it).
We write the TVP-FAVAR compactly as

v = zNi+u, u~N(0,V) (B.1)
2 = 2B te, e~N(0,Q) (B.2)
A = M1ty v~ N(0,W,) (B.3)
By = Biat+mn,  me~N(0,Ry) (B.4)

! / ~
where )\, = ((A;ﬁ’)’, ()\{ > > and 2, = [ Yt ] We also use notation where f, is the

t
standard principal components estimate of f; based on x; (using data up to time t)

and z; = { % } . If a, is a vector then q;, is the /" element of that vector; and if A,
t

is a matrix Ay, is its (i,7)" element.
Our estimation algorithm requires initialization of all state variables. In partic-
ular we define the following initial conditions for all system unknown parameters

fo ~ N(0.34,), (B.5)
o o~ N(0,59), (B.6)
By ~ N(0.37,), (B.7)
Vo = 1x 1, (B.8)
Qo = 1x Iy (B.9)

The algorithm follows the following steps:

1. Given the initial conditions and z; = z; obtain filtered estimates of \;, 3,, V;, Q¢
using the following recursion for ¢t =1, .., T

(a) The Kalman filter tells us:
)\t|DCLtCL1;t_1 ~ N (At\t—h Eatfl) )
ﬁt|Data1;t_1 ~ N <6t|t717 Ef\)&l) ’

where A1 = M1j—1, Z?‘t,l = Z?,l‘t,l + Wi, Bimr = Biciper and
EIB

tt—1

forgetting factors as: W, = (1 — 3") %) 4 and R, = (1-r1Y) Sy 11

= Ef—lhﬁ—l + R,. The error covariances are estimated using
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(b) Calculate estimates of V; and @); for use in the updating step using the
following EWMA specifications:

~

Vie = m1Vig—ap-1 + (1 — K1) az‘,taé,t (B.10)
@t = KoQi1p—1+ (1 — K2) B, (B.11)

Where Uit = Tijp — Zt>\i,t|t71: for 7 = 1, N, and Et =2t — thlﬁﬂtfl'

(c) Update \; and j, given information at time ¢ using the Kalman filter
update step

e Update )\, for each i = 1,...,n using

)\it|Data1:t ~ N ()\i,t|ta Zi\i,ﬂt) )

U PAIL =\ >
where \; ;= Nige-1 + 53,17 O@¢+Zéhﬂp44> (%0 = ZMeje)

A A ST ) AN S
it = Zut|t 1 ZJut|t 12 (V%ut*”ztzii,ﬁtflzt) thii,t\tfl'

e Update 3, from

and 2}

Bt|Data1:t ~ N <Bt\t7 Eﬁt) )
~ _ N -1/ o~
where Bt\t = /3t‘t_1+zflt_1zg,1 <Qt + thlztﬁ‘t_12£71> (Zt - Zt—15t|t_1)
8 8 B = (A s 8 = Y
and 2t|t - Et|t 1 Et\t 1%t-1 (Qt +zt_12t|t_1zt71> 21— 1Et|t 1°

(d) Update V; and Q; given information at time ¢ using the EWMA specifica-
tions as follows:

Viep = KiVig—ape—1 + (1 — K1) ai,t\tﬁ;,t\t (B.12)
Qi = kKaQi—1pp—1 + (1 — /€2)gt|t§;\t (B.13)

where Uit = Tit — Zt)\i,t\ty for i = 1, e n, and Etlt = 2t — thlﬁﬂt‘

2. Obtain smoothed estimates of \;, 3,, V;, Q; using the following recursions for
t=T-1,.,1

(a) Update \; and 3, given information at time ¢ 4 1 using the fixed interval
smoother

e Update \;; for eachi = 1,...,n from
Xit|Datay.r ~ N (N A
1t 1:T Z,t|t+17 ’L’L,t‘t-f—l )
where Aigip1r = Aigge + O (it — >\z‘ 41lE) 22,t|t+1 = 2;\7,t|t

-1
A Y A A
C; < i 1]t +1 - X t+1|t> Ci'and CF = X3 t|t (Zii,t+1|t> .
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e Update j3, from

B.|Datay.r ~ N (5t|t+1a Etﬁ\t—i—l) ’

where Bijiyr = 5t|t+0tﬁ (5t+1\t+1 - 5t+1\t)’ ZJtﬁ|t+1 - Eﬁﬁof <Ztﬂ+1|t+l - Zf—i—l\t) Ctﬁl
~1
and Cf =¥ (Ef+1|t) .

t|t

(b) Update V; and (); given information at time ¢ + 1 using the following

equations
Vidh = sVl + (= m) Vi (B.14)
QJ;H - Hth_\tl + (1 = k2) Qt_+11\t+1' (B.15)

3. Means and variances of f; given appropriate estimates of \;, 5,,V;, Q; de-
scribed in the preceding steps can be obtained using the standard Kalman
filter and smoother.

Treatment of missing values

In our application our sample is unbalanced, since it contains many financial
variables which have been collected only after the 1970s or the 1980s. Similar
issues are faced by organizations which monitor FCIs. For instance, the Chicago
Fed National FCI comprises 100 series where most of them have different starting
dates. Although specific computational methods for dealing with such issues exist
(e.g. the EM algorithm, or Gibbs sampler with data augmentation), our focus is
on averaging over many models which means such methods are computationally
infeasible. Accordingly, similar to our purpose of developing a simulation-free and
fast algorithm for parameter estimation, we want to avoid simulation methods for
estimating the missing data in z;. Additionally, methods such as interpolation can
work poorly when missing values are at the beginning of the sample.

Since the missing data in z;, are in the beginning, we make the assumption
that the factor (FCI) is estimated using only the observed series. The estimation
algorithm above allows for such an approach in a straightforward manner by just
replacing missing values with zeros. The loadings A\ (whether time-varying, or
constant) will become equal to 0, thus removing from the estimate of f; the effect
of the variables in x, which have missing values at time ¢. This feature holds both
for the initial principal components estimate f;, as well as the final Kalman filter
estimate.

Estimation of a single TVP-FAVAR (and its variants)

Given the algorithm above, we can estimate the TVP-FAVAR by choosing values
of k1, Ky, k3, k4 < 1. The main results in the paper set these to be equal to 0.99.
The restricted special cases of the TVP-FAVAR listed in Section 2.1 can be obtained
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by setting forgetting and/or decay factors to particular values. If we set k3 = 1
and x4 < 1 then we obtain the FA-TVP-VAR. Setting x3 = 1 and x4 = 1 leads to
the FAVAR. Note that if we also set k; = k, = 1 we can estimate homoskedastic
versions of the various models, since in that case V, = V,_; = ... = V; = Vj and
Q: = Qi_1 = ... = Q1 = Qo. Nevertheless, as we comment in the main body of the
paper, this is a case which is always dominated (in terms of forecast performance)
by the heteroskedastic case.

Estimation of multiple models (DMA/DMS)

In order to implement the DMA/DMS exercises we run the algorithm described
above for each of the 2! = 524, 288 models. Note that for a specific DMA exercise
all models are nested, and the only thing that changes is the number of variables
in the vector z, that we use in order to extract the FCI. Given our discussion about
how missing values are treated by the Kalman filter, in order to estimate a specific
model which uses, say, the 1st, 3rd and 15th series in x;, we simply multiply all but
the 1st, 3rd and 15th columns of z; with zeros. In that case, we remove at all times
t the effects of all 17 variables we do not use for estimation of the specific model,
and at the same time we still have as a dependent variable a 20 x 1 dimensional
vector (and programming is greatly simplified).

The most important feature of DMA is that, unlike many Bayesian model
selection and averaging procedures based on Markov Chain Monte Carlo methods,
there is no dependence in estimating each model and iterations using “for” loops
are independent. That means that it is trivial to adapt our code to use features
such as parallel computing, thus taking advantage of the widespread availability of
modern multi-core processors (or large clusters of PCs). In MATLAB this is as easy
as replacing the typical “for” loop which would run for models 1 to 524, 288, with a
“parfor” loop.

The reader is encouraged to look at our code which is available on https://sites.google
.com/site/dimitriskorobilis/matlab, which also has the option to call the Parallel
Processing Toolbox in a MATLAB environment.
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C. Sensitivity analysis

In this section we quote further results for several different choices of prior
hyperparameters, which can reflect different beliefs about time variation in the
model parameters as well as beliefs about variation over time in the optimal model.
Our benchmark prior specification was based on non-informative choices which
are always quite appealing. Such noninformative choices are easily implementable
since our estimation algorithm does not rely on simulation (MCMC) and it is
numerically very stable.

C.1. Comparison of a relatively noninformative with training
sample priors

In the body of the paper, results are presented for a subjectively-elicited but
relatively noninformative prior. An interesting alternative to such a prior is to
choose prior hyperparameters using a training sample of data. In the context of
TVP-VARs, Primiceri (2005) suggests such a prior which is based on splitting the
data into a training sample (or holdout sample) and a testing set (or estimation
sample). OLS or other simple estimates of all model parameters in the training
sample are used as starting values for the testing sample. Such training sample
priors are commonly-used in Bayesian analysis, and in the context of time-varying
parameter models help provide regularized posterior estimators which can also help
numerical stability. This latter feature is important in the case of TVP-VARs and
TVP-FAVARs estimated with MCMC - see the discussion in Section 4.1 of Primiceri
(2005).

In this section we introduce such a training sample prior for our FAVAR, FA-
TVPVAR and TVP-FAVAR models. We use the first 20 years of data (1959Q1-
1978Q4) in our original sample as the training sample. We estimate a FAVAR with
constant parameters using OLS methods (and replacing the factor with the principal
component estimate) on this training sample. These OLS estimates are used to in
the initial conditions for estimation sample, 1979Q1-2012Q1, as follows

fo ~ N (“5&0.1) ,
AN ~ N (0, 4 X var <XTS>> ,
By ~ N (0, 4 x var (BTS)> ,

Vo = 1x VTS5
QO = ]-X@Tsa
1
Tolo,; = ja
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where parameters with a hat and a superscript TS denote OLS estimates of the
respective parameters in the time-invariant FAVAR fitted using the training sample.

Other settings used in the main body of the paper remain the same, e.g. we
use four lags everywhere and the decay and forgetting factors that define each of
the models (DMA vs BMA, or FAVAR vs FA-TVP-VAR vs TVP-FAVAR) are exactly the
ones specified in Section 3.2. The forecast evaluation sample is 1990Q1-20120Q1,
and we use the one-step ahead log predictive likelihood to evaluate forecasting
performance.

Table C1: Average predictive likelihoods, h = 1, 1990Q1-2012Q1

Subjective priors Training sample priors
GDP unemployment GDP unemployment
FAVAR BMA -1.491 -8.231 -2.555 -13.375
FAVAR BMS -1.576 -8.801 -2.673 -13.747
FA-TVP-FAVAR BMA -1.439 -8.079 -2.693 -13.408
FA-TVP-FAVAR BMS -1.480 -8.216 -2.868 -13.654
TVP-FAVAR BMA -1.424 -7.789 -2.697 -13.393
TVP-FAVAR BMS -1.494 -7.918 -2.856 -13.655
FAVAR DMA -1.490 -8.225 -2.538 -13.364
FAVAR DMS -1.498 -8.805 -2.691 -13.747
FA-TVP-FAVAR DMA -1.439 -8.074 -2.660 -13.387
FA-TVP-FAVAR DMS -1.473 -8.216 -2.880 -13.654
TVP-FAVAR DMA -1.424 -7.783 -2.665 -13.369
TVP-FAVAR DMS -1.488 -7.918 -2.862 -13.655

In Table C1 we see that forecast performance, as measured by the mean of
the one-step ahead log-predictive likelihood over the period 1990Q1-2012Q1, is
inferior for all models estimated with a training sample prior. This result suggests
our subjective prior is a sensible one, consistent with the pattern in the data. That
is, combining the subjective prior with the complete sample of data means we have
more information, leading to good forecast performance. By using a training sample
in order to inform initial conditions, we lose observations from the likelihood
function and do not include the subjective prior information. As Schorfheide and
Wolpin (2012) note:

“[...] from a Bayesian perspective the use of holdout samples is
suboptimal because the computation of posterior probabilities should be
based on the entire sample and not just on a subsample.” Schorfheide
and Wolpin (2012)

From our own experience with Bayesian VARs (and FAVARs), we can argue
that training sample priors are very important in cases where numerical stability
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is an issue. For example, the decision of Primiceri (2005) and others to use
training sample priors when estimating TVP-VAR with MCMC works well because
serious numerical issues can occur when noninformative priors and diffuse initial
conditions are used in the full sample. In the present paper where we examine
high dimensional TVP-FAVARs, we do not have numerical issues due to the
computational simplicity of our algorithm (which does not involve use of MCMC
methods). This advantage of our estimation methods justifies our decision to
use relatively noninformative priors in the full available sample 1959-2012 as the
benchmark case.

C.2. Comparison of faster/slower model switching

Calculation of DMA/DMS time-varying probabilities depends on selection of a
hyperparameter «, which is a forgetting factor that determines how fast we “forget”
past observations. Thus, this hyperparameter o controls how much data we use for
the calculation of time-varying probabilities at time ¢ and, thus, determines the rate
of model switching. That is, the less data that is used, the more rapidly will model
switching will occur.

Remember that « = 1 leads to standard BMA, where all data available up
to time ¢ are used to calculate the model probabilities m;;, j = 1,...,J. The
benchmark results reported in the body of the paper, « = 0.99, allows for slightly
more rapid model switching. In this appendix we provide results for a choice of
o which reflects beliefs about even faster model switches (o« = 0.95), as well as
the extreme case of o = 0.001. Note that this latter case is almost equivalent to
the case of model averaging using equal weights, since it is trivial to prove that as
o — 0 then 7,y ; — 1/J forall j =1,...,J. Naive model averaging schemes using
equal weights have been shown in many cases to perform much better than more
elaborate econometric techniques that perform estimation of the model averaging
weights; see Aiolfi,Capistran and Timmermann (2010).

Table C2 shows the log-predictive likelihoods for the full TVP-FAVAR model for
the different values of a. For all values of & DMA is performs better than DMS.
The case o = 0.95 is always dominated by our benchmark value of o = 0.99.
Interestingly, the equal-weights case (o« = 0.001) leads to more precise forecasts
for GDP (but not unemployment). Therefore, there could potentially be further
improvements in forecast accuracy by estimating « using grid-search methods. We
remind the reader that we do not perform such a search due to the already high
computational demands of our empirical exercise.
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Table C2: Average predictive likelihoods, h = 1, 1990Q1-2012Q1

GDP unemployment
BENCHMARK SPECIFICATION (WITH « = 0.99)
TVP-FAVAR DMA -1.424 -7.783
TVP-FAVAR DMS -1.494 -7.918

MODELS WITH FASTER CHANGING PROBABILITIES

TVP-FAVAR DMA (a = 0.95) -1.487 -7.847
TVP-FAVAR DMS (a = 0.95) -1.707 -8.032
TVP-FAVAR DMA (a = 0.001) -1.414 -7.848
TVP-FAVAR DMS (a = 0.001) -1.621 -7.977

C.3. Comparison of faster/slower parameter switching

Similar to the hyperparameters that control model switching, 1, k2, k3, k4 control
the amount of time-variation in the error covariances (V;, @Q);), as well as the time-
varying loadings )\; and the VAR coefficients 3,. Table C3 presents results for
different choices of these decay and forgetting factors.

Table C3: Average predictive likelihoods, » = 1, 1990Q1-2012Q1

GDP  unemployment
BENCHMARK SPECIFICATION
TVP-FAVAR DMA -1.424 -7.783
TVP-FAVAR DMS -1.494 -7.918
MODELS WITH FASTER CHANGING PARAMETERS
Case 1: faster moving volatility
TVP-FAVAR DMA (k; = ke = 0.92) -1.514 -7.362
TVP-FAVAR DMS (k1 = ko = 0.92) -1.684 -7.519
Case 2: faster moving coefficients
TVP-FAVAR DMA (k3 = k4 = 0.97) -1.527 -7.260
TVP-FAVAR DMS (k3 = k4 = 0.97) -1.717 -7.434
Case 3: faster moving volatility & coefficients
TVP-FAVAR DMA (K,l — K9 = 092, R3 = R4 = 097) -1689 -7.304
TVP-FAVAR DMS (k1 = ke = 0.92, k3 = k4 = 0.97) -1.796 -7.518
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