
Chapter 1 

The Markov-Switching 

Vector Autoregressive Model 

This first chapter is devoted to a general introduction into the Markov-switching vec­

tor autoregressive (MS-VAR) time series model. In Seetion 1.2 we present the fun­

damental assumptions constituting this class of models. The discussion of the two 

components of MS-V AR processes will clarify their on time invariant vector auto­

regressive and Markov-chain models. Some basic stochastic properties ofMS-VAR 

processes are presented in Section 1.3. Finally, MS-VAR models are compared to 

alternative non-normal and non-linear time series models proposed in the literature. 

As most non-linear models have been developed for univariate time series, this dis­

cussion is restricted to this case. However, generalizations to the vector case are also 

considered. 

1.1 General Introduction 

Reduced form vector autoregressive (V AR) models have been become a dominant 

research strategy in empirical macroeconomics since SIMS [1980]. In this study we 

will consider VAR models with changes in regime, most results will carry over to 

structural dynamic econometric models by treating them as restricted VAR models. 

When the system is subject to regime shifts, the parameters () of the V AR process 

will be time-varying. But the process might be time-invariant conditional on an un­

observable regime variable St which indicates the regime prevailing at time t. Let 

M denote the number of feasible regimes, so that St E {I, ... , M}. Then the con-
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ditional probability density of the observed time series vector Yt is given by 

{ 

f(Ytl.Yt-l,fh) 

p(YtIYt-l' St) = : 

f(YtlYt-l, BM ) 

if St = 1 

(1.1) 

if St = M, 

where Bm is the VAR parameter vector in regime m = 1, ... , M and Yt-l are the 

observations {Yt-j }~l' 

Thus, for a given regime St, the time series vector Yt is generated by a vector auto­

regressive process of order p (V AR(P) model) such that 

p 

E[YtIYt-1,St] = v(St) + LAj(St)Yt-j, 
j=l 

where Ut is an innovation term, 

The innovation process Ut is a zero-mean white noise process with a variance­

covariance matrix L;(St), wh ich is assumed to be Gaussian: 

If the V AR process is defined conditionally upon an unobservable regime as in equa­

tion (1.1), the description of the data generating mechanism has to be completed by 

assumptions regarding the regime generating process. In Markov-switching vector 

autoregressive (MS-VAR) models - the subject ofthis study - it is assumed that the 

regime St is generated by a discrete-state homogeneous Markov chain: 1 

where p denotes the vector of parameters of the regime generating process. 

The vector autoregressive model with Markov-switching regimes is founded 

on at least three traditions. The first is the linear time-invariant vector auto­

regressive model, wh ich is the framework for the analysis of the relation of 

the variables of the system, the dynamic propagation of innovations to the 

1 The notation Pr(·) refers to a discrete probability measure, while p(.) denotes a probability density 

function. 
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system, and the effects of changes in regime. Secondly, the basic statist­

ical techniques have been introduced by BAUM & PETRIE [1966] and BAUM 

et al. [1970] for probabilistic functions oi Markov chains, while the MS­

VAR model also encompasses older concepts as the mixture oi normal dis­

tributions model attributed to PEARSON [1894] and the hidden Markov-chain 

model traced back to BLACKWELL & KOOPMANS [1975] and HELLER [1965]. 

Thirdly, in econometrics, the first attempt to create Markov-switching regression 

models were undertaken by GOLDFELD & QUANDT [1973], which remained, 

however, rather rudimentary. The first comprehensive approach to the statistical 

analysis of Markov-switching regression models has been proposed by LINDGREN 

[1978] which is based on the ideas ofBAUM et al. [1970]. In time series analysis, the 

introduction of the Markov-switching model is due to HAMILTON [1988], [1989] 

on which most recent contributions (as wen as this study) are founded. Finally, 

our consideration of MS-V AR models as a Gaussian vector autoregressive process 

conditioned on an exogenous regime generating process is closely related to state 

space models as wellas the concept of doubly stochastic processes introduced by 

TJ0STHEIM [1986b]. 

The MS-VAR model belongs to a more general class of models that characterize a 

non-linear data generating process as piecewise linear by restricting the process to 

be linear in each regime, where the regime is conditioned is unobservable, and only 

a discrete number of regimes are feasible. 2 These models differ in their assumptions 

conceming the stochastic process generating the regime: 

(i.) The mixture of normal distributions model is characterized by serially inde­

pendently distributed regimes: 

In contrast to MS-V AR models, the transition probabilities are independent of 

the history of the regime. Thus the conditional probability distribution of Yt is 

independent of St-b 

2In the case oftwo regimes, POTTER [1990],[1993] proposed to call this dass of non-linear, non-normal 
models the single index generalized multivariate autoregressive (SIGMA) model. 
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and the conditional mean E[YtIYt-l' St-l] is given by E[YtIYt_l].3 Even so, 

this model can be considered as a restricted MS-VAR model where the trans­

ition matrix has rank one. Moreover, if only the intercept term will be regime­

dependent, MS(M)-VAR(P) processes with Gaussian eITors and i.i.d. switch­

ing regimes are observationally equivalent to time-invariant VAR(P) processes 

with non-nor;mal eITors. Hence, the modelling with this kind of model is very 

limited. 

(ii.) In the self-exciting threshold autoregressive SETAR(p, d, r) model, the 

regime-generating process is not assumed to he exogenous but directly linked 

to the lagged endogenous variable Yt_d. 4 For a given hut unknown threshold 

r, the 'probability' of the unobservable regime St = 1 is given by 

While the presumptions of the SETAR and the MS-AR model seem to be quite 

different, the relation between both model alternatives is father cIose. This is 

also illustrated in the appendix which gives an example showing that SETAR 

and MS-VAR models can be ohservationally equivalent. 

(iii.) In the smooth transition autoregressive (STAR) model popularized by GRAN­

GER & TERÄSVIRTA [1993], exogenous variables are mostly employed to 

model the weights of the regimes, but the regime switching rule can also be 

dependent on the history of the observed variables, i.e. Yt-d: 

where F(Y~_d6 - r) is a continuous function determining the weight of re-

3The likelihood function is given by 

T M 

p(YTIYo;O,Ü = ~ ~ (TnP(YtlYt-l,Om), 
t=1111=1 

where 0 = (O~, ... , o~ Y collects the VAR parameters and {m is the ergodie probability of regime 
m. 

4In threshold autoregressive (TAR) processes, the indicator function is defined in a switching variable 
Zt-d, d ?: O. In addition, indicator variables can be introduced and treated with error-in-variabIes 
techniques. Refer for example to COSSLETT & LEE [1985] and KAMINSKY [1993]. 
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gime 1. For example, TERÄSVIRTA & ANDERS ON [1992] use the logistic dis­

tribution function in their analysis ofthe V.S. business cycle.5 

(iv.) All the previously mentioned models are special cases of an endogenous se­

lection Markov-switching vector autoregressive model. In an EMS(M, d)­

V AR(P) model the transition probabilities Pij ( .) are functions of the observed 

time series vector Yt-d: 

Thus the observed variables contain additional information on the conditional 

probability distribution of the states: 

a.e. 

Pr(Stl{St-j}~l) =1= Pr(Stl{St-j}~l' {Yt-j}~l)· 

Thus the regime generating process is no longer Markovian. In contrast to the 

SETAR and the STAR model, EMS-VAR models include the possibility that 

the threshold depends on the last regime, e.g. that the threshold for staying 

in regime 2 is different from the threshold for switching from regime 1 to re­

gime 2. The EMS(M, d)-VAR(P) model will be presented in Seetion 10.3. It 

is shown that the methods developed in this study for MS-V AR processes can 

easily be extended to capture EMS-VAR processes. 

In this study, it will be shown that the MS-VAR model can encompass a wide spec­

trum of non-linear modifications of the VAR model proposed in the literature. 

1.2 Markov-Switching Vector Autoregressions 

1.2.1 The Vector Autoregression 

Markov-switching vector autoregressions can be considered as generalizations ofthe 

basic finite order VAR model of order p. Consider the p-th order autoregression for 

the K -dimensional time series vector Yt = (Ylt, ... , Y KtY, t = 1, ... , T, 

Yt = v + A1Yt-l + ... + ApYt-p + Ut, (1.2) 

SIf F(·) is even. e.g. F(Yt-d - r) = 1 - exp {-(Yt-d - r)2}. a generalized exponential auto­

regressive model as proposed by OZAKI [1980] and HAGGAN & OZAKI [1981] ensues. 
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where Ut IID (O,~) and Yo, ... , Yl-p are fixed. Denoting A(L) 

IK - Al L - ... - ApLP as the (K X K) dimensional lag polynomial, we as­

sume that there are no roots on or inside the unit circle I A( z) I =I ° for I z I ~ 1 where 

L is the lag operator, so that Yt- j = Lj Yt . If a normal distribution of the error is 

assumed, Ut "" NID (0, ~), equation (1.2) is known as the intercept form of a stable 

Gaussian VAR(P) model. This can be reparametrized as the mean adjusted form of 

a VARmodel: 

Yt - Jl = AI(Yt-1 - Jl) + ... + Ap(Yt-p - Jl) + Ut, (1.3) 

where Jl = (IK - L:J=1 Aj)-lv is the (K x 1) dimensional mean ofYt. 

Ifthe time series are subject to shifts in regime, the stable VAR model with its time 

invariant parameters might be inappropriate. Then, the MS-V AR model might be 

considered as a general regime-switching framework. The general idea behind this 

dass of models is that the parameters of the underlying data generating process6 of 

the observed time series vector Yt depend upon the unobservable regime variable St, 

which represents the probability of being in a different state of the world. 

The main characteristic of the Markov-switching model is the assumption that the 

unobservable realization of the regime St E {I, ... , M} is governed by a discrete 

time, discrete state Markov stochastic process, which is defined by the transition 

probabilities 

M 

Pij = Pr(St+1 = jlSt = i), LPij = 1 Vi,j E {I, ... , M}. (1.4) 
j=l 

More precisely, it is assumed that St follows an irreducible ergodie M state Markov 

process with the transition matrix P. This will be discussed in Section 1.2.4 in more 

detail. 

In generalization of the mean-adjusted VAR(P) model in equation (1.3) we would 

like to consider Markov-switching vector autoregressions of order P and M regimes: 

Yt-Jl(St) = AI(sd (Yt-l - Jl(St-I))+" .+Ap(sd (Yt-p - Jl(St-p))+Ut, (1.5) 

where Ut "" NID (0, ~(St)) and Jl(St), Al (St), .. . ,Ap(St), ~(St) are parameter 

shift functions describing the dependence of the parameters 7 Jl, Al, ... , Ap, ~ on 

6 For reasons of simplicity in notation, we do not introduce a separate notation for the theoretical repre­

sentation of the stochastic process and i15 actual realizations. 

7In the notation of state-space models, the varying parameters p., v, Al, ... , A p , 1; become functions 

of the model's hyper-parameters. 
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the realized regime St, e.g. 

if St = 1, 

(1.6) 

if St = M. 

In the model (1.5) there is after a change in the regime an immediate one-time jump 

in the process mean. Occasionally, it may be more plausible to assurne that the mean 

smoothly approaches a new level after the transition from one state to another. In 

such a situation the following model with a regime-dependent intercept term v(St) 

may be used: 

Yt (1.7) 

In contrast to the linear VAR model, the mean adjusted form (l.5) and the intercept 

form (1.7) of an MS(M)-VAR(P) model are not equivalent. In Chapter 3 it will be 

seen that these forms imply different dynamic adjustments of the observed variables 

after a change in regime. While a permanent regime shift in the mean J.L(St) causes 

an immediate jump ofthe observed time series vector onto its new level, the dynamic 

response to a once-and-for-all regime shift in the intercept term v(St} is identical to 

an equivalent shock in the white noise series Ut. 

In the most general specification of an MS-V AR model, all parameters of the au tore­

gression are conditioned on the state St of the Markov chain. We have assumed that 

each regime m possesses its VAR(P) representation with parameters v(m) (or /-Lrn), 

~m, Alm, ... , A jm , m = 1, ... , M, such that 

{ 

A 1/2 
Yt = VI + A llYt-l + ... ~ plYt-p + L;1 Ut, if St = 1 

A ,,1/2 
VM + A1MYt-l + ... + pMYt-p + LJM Ut, if St = M 

where Ut '" NID (0, IK ).8 

However for empirical applications, it might be more helpful to use a model where 

only some parameters are conditioned on the state of the Markov chain, while the 

8 Even at this early stage a complication arises if the mean adjusted fonn is considered. The conditional 
density of Yt depends not only on St but also on St-l, ... , St-p. i.e. MP+l different conditional 
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other parameters are regime invariant. In Section 1.2.2 some particular MS-VAR 

models will be introduced where the autoregressive parameters, the mean or the in­

tercepts, are regime-dependent and where the error term is hetero- or homoskedastic. 

Estimating these particular MS-VAR models is discussed separately in Chapter 9. 

1.2.2 Particular MS-VAR Processes 

The MS-VAR model allows for a great variety of specifications. In principle, it 

would be possible to (i.) make all parameters regime-dependent and (ii.) to intro­

duce separate regimes for each shifting parameter. But, this would be no practicable 

solution as the number of parameters of the Markov chain grows quadratic in the 

number of regimes and coincidently shrinks the number of observations usable for 

the estimation of the regime-dependent parameter. For these reasons a specific-to­

general approach may be preferred for the determination of the regime generating 

process by restricting the shifting parameters (i.) to apart of the parameter vector 

and (ii.) to have identical break-points. 

In empirical research, only some parameters will be conditioned on the state of the 

Markov chain while the other parameters will be regime invariant. In order to estab­

lish a unique notation for each model, we specify with the general MS(M) term the 

regime-dependent parameters: 

M Markov-switching mean , 

I Markov-switching intercept term , 

A Markov-switching autoregressive parameters, 

H Markov-switching heteroskedasticity . 

To achieve a distinction ofVAR models with time-invariant mean and intercept term, 

means of Yt are to be distinguished: 

1'1 +All (Yt-l -1'1)+ ... +Apl (Yt-p-I'I )+:r:~l2ut, ie "t=I, ... , st_p=l 

1'1 +All (Yt -1 -1'1)+ ... +A p l (Yt-p -1'2 )+:r:~l2ut, ie .5t=I, ... , St_p+l=l. si_p=2 

Yt= 

I' M +A 1 M (Yt-l -1'1)+· : . +ApM(Yt-p -I'M -1 )+:r:~Ut, iC SI =M···. t - p +l =M, 't_p=M-l 

I' M+A 1 M ÜII-l -I'M)+· .. +ApM(YI-p-I'M )+:r:~Ut, iC"1 =M, ... "I_p=M 
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Table 1.1: Special Markov Switching Vector Autoregressive Models 

MSM MSI Specification 

J1. varying J1. invariant 11 varying 11 invariant 

Aj Einvariant MSM-VAR linear MV AR MSI-VAR linearVAR 

invariant E varying MSMH-VAR MSH-MVAR MSlli-VAR MSH-VAR 

A j Einvariant MSMA-VAR MSA-MVAR MSIA-VAR MSA-VAR 

varying E varying MSMAH-VAR MSAH-MVAR MSIAH-VAR MSAH-VAR 

To achieve a distinction ofVAR models with time-invariant mean and intercept term, 

we denote the mean adjusted form of a vector autoregression as MV AR(p). An over­

view is given in Table 1.1. Obviously the MSI and the MSM specifications are equi­

valent if the order of the autoregression is zero. For this so-ealled hidden Markov­

chain model, we prefer the notation MSI(M)-VAR(O). As it will be seen later on, the 

MSI(M)-VAR(O) model and MSI(M)-VAR(P) models with p > 0 are isomorphie 

eoneeming their statistical analysis. In Section 10.3 we will further extend the dass 

of models under eonsideration. 

The MS-VAR model provides a very flexible framework which allows for hetero­

skedasticity, oecasional shifts, reversing trends, and foreeasts performed in a non­

linear manner. In the following sections the foeus is on models where the mean 

(MSM(M)-VAR(p) models) or the intereept term (MSI(M)-VAR(P) models) are 

subject to oceasional diserete shifts; regime-dependent eovarianee struetures of the 

proeess are eonsidered as additional features. 

1.2.3 The Regime Shift Function 

At this stage it is useful to define the parameter shifts more dearly by formulating the 

system as a single equation by introducing "dummy" (or more precisely) indicator 
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variables: 

( ) { 
1 if St = m 

I St = m = o otherwise, 

where m = 1, ... , M. In the course of the following chapters it will prove helpful 

to coIlect aIl the information about the realization of the Markov chain in the vector 

~t as 

~t = [ 
I(st = 1) 1 

l(s, ~ M) 

Thus, ~t denotes the unobserved state ofthe system. Since ~t consists ofbinary vari­

ables, it has some particular properties: 

[ 
Pr( St = 1)] [pr( ~t = ['d ] 

Pr(s, := M) Pr(6 ~ 'M) , 

where [,m is the m-th column ofthe identity matrix. Thus E[~tl, or a weIl defined con­

ditional expectation, represents the probability distribution of St. It is easily verified 

that 1~~t = 1 as well as ~:~t = 1 and ~t~: = diag (~t), where 1M = (1, ... , 1)' is 

an (M x 1) vector. 

For example, we can now rewrite the mean shift function (1.6) as 

M 

/L(st} = L /LmI(St = m). 
m=I 

In addition, we can use matrix notation to derive 

where M is a (K x M) matrix containing the means, 

M = [/LI . .. /LM]' /L = vec (M). 

We will occasionally use the following notation for the variance parameters: 

:E 
(KxMK) 

~M ] 
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h ( ~ ) ( I , )' vec ~m, 0' = 0'1"", O'M 

such that 

is a (K X K) matrix. 

1.2.4 The Hidden Markov Chain 

The description of the data-generating process is not eompleted by the observational 

equations (1.5) or (1.7). A model for the parameter generating process has to be for­

mulated. If the parameters depend on a regime which is assumed to be stoehastic and 

unobservable, a generating process for the states St must be postulated. Using this 

law, the evolution of regimes then might be inferred from the data. In the MS-V AR 

model the state process is an ergodic Markov chain with a finite number of states 

St = 1, ... , M and transition probabilities Pij' 

It is convenient to collect the transition probabilities in the transition matrix P, 

Pu Pl2 PIM 

P21 P22 P2M 
P= (1.8) 

Pu P12 PlM 

where PiM = 1 - Pil - ... - Pi,M-l for i = 1, ... , M. To be more precise, 

all relevant information about the future of the Markovian process is inc1uded in the 

present state ~t 

where the past and additional variables such as Yt reveal no relevant information bey­

ond that of the actual state. The assumption of ajirst-order Markov process is not 

especially restrictive, since eaeh Markov ehain of an order greater than one ean be 

reparametrized as a higher dimensional first-order Markov process (cf. FRIEDMANN 

[1994]). A comprehensive diseussion of the theory of Markov ehains with applica­

tion to Markov-switehing models is given by HAMILTON [1994b, eh. 22.2]. We will 
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just give abrief introduction to some basic concepts related to MS-V AR models, in 

particular to the state-space form and the filter. 

It is usually assumed that the Markov process is ergodic. A Markov chain is said to 

be ergodie if exactly one of the eigenvalues of the transition matrix P is unity and 

all other eigenvalues are inside the unit circle. Under this condition there exists a sta­

tionary or unconditional prob ability distribution of the regimes. The ergodie probab­

ilities are denoted by [ = E[~tl. They are determined by the stationarity restriction 

p' [ = [ and the adding up restriction 1 ~[ = 1, from which it follows that 

(= [ IM-l -:~~,-"LM-' P;~-I'M ]-1 [ ~M-l]. (1.9) 

If [ is strictly positive, such that all regimes have a positive unconditional probab­

ility [i > 0, i = 1, ... , M, the process is called irreducible. The assumptions of 

ergodicity and irreducibility are essential for the theoretical properties of MS-V AR 

models, e.g. its property of being stationary. The estimation procedures, which will 

be introduced in Chapter 6 and Chapter 8 are flexible enough to capture even these 

degenerated cases, e.g. when there is a single jump ("structural break") into the ab­

sorbing state that prevails until the end of the observation period. 

1.3 The Data Generating Process 

After this introduction ofthe two components ofMS-VAR models, (i.) the Gaussian 

VAR model as the conditional data generating process and (ii.) the Markov chain as 

the regime generating process, we will briefly discuss their main implications for the 

data generating process. 

For given states ~t and lagged endogenous variables Yt-l = (Y~-l' Y~-2' ... ,Y~, 
Y~, ... , Y~ _p)' the conditional probability density function of Yt is denoted by 

p(Yt I~t, Yt-l). It is convenient to assume in (1.5) and (1.7) a normal distribution of 

the error term Ut, so that 

p(Ytl~t = t m , Yt-d 

In(21l')-1/2In IEI-1/ 2 exp{(Yt - Ymt)/E-;;/(Yt - Ymt)}, (1.10) 
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where Ymt = E[Ytl~t, Yt-l] is the conditional expectation of Yt in regime m. Thus 

the conditional density of Yt for a given regime ~t is normal as in the VAR model 

defined in equation (1.2). Thus: 

NID (Ymt, ~m), 

,...., NID (Y~~t, I:(~t ® IK )) , (1.11) 

where the conditional means Ymt are summarized in the vector Yt which is e.g. in 

MSI specifications of the form 

Yt = 
v, + 2::=,' AljYt-j ]. 

VM + 2: j =1 AMjYt-j 

Assuming that the information set available at time t - 1 consists only of the sampie 

observations and the pre-sample values collected in Yt-l and the states of the Markov 

chain up to ~t-lo the conditional density of Yt is a mixture of normals9 : 

p(Ytl~t-l = ti, Yt-d 
M 

L p(Ytl~t-l = tm, Yt-d Pr(~tl~t-l = ti) 
m=1 

M 

L Pim (In(27r)-t In I~ml-t exp{(Yt - Ymt)'~;;/(Yt - Ymt)} Jl.12) 
m=1 

If the densities of Yt conditionaI on ~t and Yt-l are collected in the vector 1]t as 

1]t = (1.13) 

equation (1.12) can be written as 

(1.14) 

9The reader is referred to HAMILTON [1994a] for an excellent introduction into the major concepts of 

Markov chains and to TITTERINGTON, SMITH & MAKOV [1985] forthe statistical properties ofmix­

tures of normals. 
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Since the regime is assumed to be unobservable, the relevant information set avail­

able at time t - 1 consists only of the observed time series until time t and the unob­

served regime vector et has to be replaced by the inference Pr(et!Y-r). These prob­

abilities of being in regime m given an information set YT are denoted ~mtlT and 

coIIected in the vector e* as 

[ 

Pr(et = LIIYT) 1 
e* = 

Pr(et = l.MIYT)' 

which allows two different interpretations. First, etl T denotes the discrete conditional 

prob ability distribution of et given YT • Secondly, e* is equivalent to the conditional 

mean of et given YT • This is due to the binarity ofthe elements of ~t, which implies 

that E[emt] = Pr(emt = 1) = Pr(St = m). Thus, the conditional probability 

density of Yt based upon Yt-l is given by 

M 

L p(Yt, et-l = LmlYi-d 
m=l 

M 

L p(Ytlet-l = l.m, Yi-d Pr(et-l = LmlYt-d (1.15) 
m=l 

As with the conditional probability density of a single observation Yt in (1.15) the 

conditional probability density of the sampie can be derived analogously. The tech­

niques of setting-up the likelihood function in practice are introduced in Seetion 6.1. 

Here we only sketch the basic approach. 

Assuming presample values Yo are given, the density of the sampie Y 

given states e is determined by 

T 

p(YIO = IIp(Ytl~t, Yi-d· 
t:=l 

YT for 

(1.16) 

Hence, the joint prob ability distribution of observations and states can be calculated 

as 
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p(Y,O p(YI~) Pr(~) 
T T rr p(ytl~t, Y't-d II Pr(~tl~t-d Pr(~d· (1.17) 

t=l t=2 

Thus, the unconditional density of Y is given by the marginal density 

p(Y) = J p(Y, 0 d~, (1.18) 

where J f(x, ~)~ := L::=1 ... Lt:=1 f(x, ~T = tiT ,· •• , 6 = [,il) denotessum­

mation over all possible values of ~ = ~T (9 ~T-1 (9 ... (96 in equation (1.18). 

Finally, it follows by the definition of the conditional density that the conditional 

distribution of the total regime vector ~ is given by 

Pr(~IY) = p;~~) . 
Thus, the desired conditional regime probabilities Pr(~tIY) can be derived by mar­

ginalization of Pr(~IY). In practice these cumbrous calculations can be simplified 

by a recursive algorithrn, a matter which is discussed in Chapter 5. 

The regime probabilities for future periods follow from the exogenous stochastic 

process of ~t, more precisely the Markov property of regimes, Pr(~T+hl~T, Y) = 

Pr(~T+hl~T ), 

L Pr(~T+hl~T, Y) Pr(~TIY) 
~t 

L Pr(~T+hl~T) Pr(~TIY). 
~t 

These calculations can be summarized in the simple forecasting rule: 

[ 
Pr(sT+h = llY) 1 

Pr(ST+h = MIY) 

= [p,]h [ 
Pr(ST = llY) 1 

Pr(ST ~ MIY) , 

where Pis the transition matrix as in (1.8). Forecasting MS-VAR processes is dis­

cussed in fulliength in Chapter 4. 

In this section we have given just a short introduction to some basic concepts related 

to MS-V AR models; the following chapters will provide broader analyses of the vari­

ous topics. 
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1.4 Features of MS-VAR Processes and Their Rela­

tion to Other Non-linear Models 

The Markov switching vector autoregressive model is a very general approach for 

modelling time series with changes in regime. In Chapter 3 it will be shown that MS­

VAR processes with shifting means or intercepts but regime-invariant variances and 

autoregressive parameters can be represented as non-normal linear state space mod­

els. Furthermore, MSM-VAR and MSI-VAR models possess linear representations. 

These processes may be beuer characterized as non-normal than as non-linear time 

series models as the associated Wold representations coincide with those of linear 

models. While our primary research interest concems the modelling of the condi­

tional mean, we will exemplify the effects of Markovian switching regimes on the 

higher moments of the observed time series. 

For sake of simplicity we restrict the following consideration mainly to univariate 

processes 

p 

Yt v(St) + L aj(St)Yt-j + Ut, Ut rv NID (0, (J2(st)). 
j=l 

Most of them are made for two-regimes. Thus, the process generating Yt can be re­

written as 

p 

Yt [V2 + (VI - v2)6t) + l:[a2 + (al - (2)6t]Yt-j + Ut, 
j=l 

Ut rv NID (0, [(J~ + ((J~ - (J~)~lt]). 

If the regime St is govemed by a Markov chain, the MS(2)-AR(P) model ensues. It 

will be shown that even such simple MS-AR models can encompass a wide spectrum 

of modifications of the time-invariant normal linear time series model. 
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1.4.1 Non-Normality of the Distribution of the Observed Time 

Series 

As already seen the conditional densities p(YtlYt-d are a mixture of M normals 

p(Ytl~t, Yt-l) with weights P(~tlYt-l): 

M 

p(YtlYt-d = L tmtlt-l!P (O"-l(Yt -Ymt)) 
m=1 

where!pO is a standard normal density and Ymt = E[Ytl~t = i.m, Yt-l]' Therefore 

the distribution of the observed time series can be multi-modal. Relying on well­

known results, cf. e.g. TITTERINGTON et al. [1985, p. 162], we can notice for M = 

2: 

Example 1 An MS(2)-AR(p) process with a homoskedastic Gaussian inno­

vation process Ut '" NID (0,0"2) generates bimodality of the conditional density 

p(YtIYt-d if 
0"-1(Ylt - Y2t) > ß(l 2: 2, 

where the critical value ß(l depends on the ergodie regime probability ~lr e.g. 

ßO.5 = 2 and ßO.1 = .6.0.9 = 3. 

In contrast to Gaussian V AR processes, MS-V AR models can produce skewness 

(non-zero third-order cross-moments) and leptokurtosis (fat tails) in the distribution 

of the observed time series. A simple model that generates leptokurtosis in the dis­

tribution of the observed time series Yt is provided by the MSH(2)-AR(0) model: 

Example 2 Let Yt be an MSH(2)-AR(O) process, 

Yt - Ji, = Ut, Ut '" NID (0, O"U(St = 1) + O"~I(St = 2)). 

Then it can be shown that the excess kurtosis is given by 

4 -- 2 22 
E[(Yt - Ji,) ] 366(0"1 - 0"2) 
-=,,-'---~:=:- - 3 = . 
E[(Yt - Ji,)2)2 (60"; + ~20"n2 

Thus, the excess kurtosis is different from zero if O"r "# O"~ and 0 < ~l < 1. 

Box & TIAO [1968] have used such a model for the detection of outliers. In order 

to generate skewness and excess kurtosis it is e.g. sufficient to assurne an MSI(2)­

AR(O) model: 
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Example 3 Let Yt be generated by an MSM(2)-AR(O) process: 

so that 

Then it can be shown that the normalized third moment oJ Yt is given by the skewness 

E[(Yt - /lVl (/-LI - /-L2)3(1 - 2~1)~1(1- ~d 
E[(Yt - /-L)2j3/2 - (0'2 + (/-LI - /-L2)2~1(1- ~d)3/2' 

If the regime i with the highest conditional mean /-Li > /-Lj is less likely than the other 

regime, ~i < ~j, then the observed variable is more likely to be Jar above the mean 

than it is to be Jar below the mean. 

Furthermore the normalizedJourth moment oJYt is given by the excess kurtosis 

Since we have that max[l E[D,I) {~l (1-~d} = ~ < t, the excess kurtosis is positive, 

i. e. the distribution oJ Yt has more mass in the tails than a Gaussian distribution with 

the same variance. 

The combination of regime switching means and variances in an MSIH(2)-AR(0) 

process (cf. Example 4) is given in SOLA & TIMMERMANN [1995]. The implic­

ations for option pricing are discussed in KÄHLER & MARNET [1994b]. For an 

MSMH(2)-AR(4) model, the conditional variance of the one-step prediction eITor 

is given by SCHWERT [1989] and PAGAN & SCHWERT [1990]. 

1.4.2 Regime-dependent Variances and Conditional Heteroske­

dasticity 

An MS(M)-AR(P) process is called conditional heteroskedastic if the conditional 

variance ofthe prediction eITor Yt - E[yt\Yt-l], 

is a function ofthe information set Yt-l . Conditional heteroskedasticity can be in­

duced by regime-dependent variances, autoregressive parameters or means. 
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In MS-AR models with regime-invariant autoregressive parameters, conditional 

heteroskedasticity implies that the conditional variance of the prediction eITor 

Yt - E[Ytltt-l], is a function of the filtered regime vector tt-llt-l. In general, an 

MS-AR process is called regime-conditional heteroskedastic if 

is a function of ~t-l. Interestingly, regime-dependentvariances are neithernecessary 

nor sufficient for conditional heteroskedasticity. As stated in Chapter 3, a necessary 

and sufficient condition for conditional heteroskedasticity in MS-VAR models with 

regime-invariant autoregressive parameters is the serial dependence of regimes. 

On the other hand, even if the white noise process Ut is homoskedastic, (7"2 (St) = (7"2, 

the observed process Yt can be heteroskedastic. Consider the following example: 

Exarnple 4 Let Yt be an MSI(2)-AR(O) process 

Yt - J.-L 

with Ut ""' NID (0, (7"2) and serial correlation in the regimes according to the trans­

ition matrix P. Employing the ergodie regime probability [1, Yt can be written as 

where tltlt-l = putlt-Ilt-l + P21 (1 - tlt-llt-d = (Pu + P22 - l)tlt-llt-l + 
(l-P22) is the predicted regime probability Pr(St = litt-I). Thus {Yd is a regime­

conditional heteroskedastic process. 

In contrast to ARCH models, the conditional variance in MS-VAR models (with 

time-invariant autoregressive parameters) is a non-linear function of past squared 
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errors since the predicted regime probabilities generally are non-linear functions of 

Yt-l. 

Recently some approaches have been made to consider Markovian regime shifts in 

variance generating processes. The dass of autoregressive conditional heteroske­

dastic processes introduced by ENGLE [1982] is used to formulate the conditional 

process; OUf assumption of an i. i .d. distributed error term is substituted by an ARCH 

process Ut, cf. interalia HAMILTON & LIN [1994], HAMILTON & SUSMEL [1994], 

CAI [1994] and HALL & SOLA [1993b]. ARCH effects can be generated by MSA­

AR processes which will be considered in the next section. 

1.4.3 Regime-dependent Autoregressive Parameters: ARCH 

and Stochastic Unit Roots 

Autoregressive conditional heteroskedasticity is known from random coefficient 

models. Therefore it is not very surprising that also MSA-VAR models may lead to 

ARCH. This effect will be considered in the following simple example. 

Example 5 Let Yt be generated by an MSA(2)-MAR( 1) process with i.i.d. regimes: 

Sedat independenceofthe regimes implies PlI = I-P22 = p: the regime-dependent 

autoregressive parameters al, a2 are restricted such that E[a] = alP+a2(1- p) = 

O. Thus it can be shown that 

E[YtIYt-l] 

E[(Yt - p)2IYt_ll 

p + (alP + a2(1 - p)) Yt-l = J-L, 

(}"2 + (aip + a~(1- p)) (Yt-l - p)2. 

Then Yt possesses an ARCH representation Yt = J-L + et with 

where I = -al a2 > 0 and ct is white noise. Thus, ARCH( 1) models can be inter­

preted as restricted MSA(2)-AR( 1) models. 
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The theoretical foundations of MSA-V AR processes are laid in T J 0STHEIM [1986b]. 

Some independent theoretical results are provided by BRANDT [1986]. As poin­

ted out by TJ0STHEIM [1986b], the dynamic properties of models with regime­

dependent autoregressive parameters are quite complicated. Especially, if the pro­

cess is stationary for some regimes and mildly explosive for others, the problems of 

stochastic unit root processes as introduced by GRANGER & SWANSON [1994] are 

involved.10 

It is worth noting that the stability of each VAR sub-model and the ergodicity of the 

Markov chain are sufficient stability conditions; they are however not necessary to 

establish stability. Thus, the stability of MSA-AR models can be compatible with 

AR polynomials containing in some regimes roots greater than unity in absolute 

value and less than unity in others. Necessary and sufficient conditions for the stabil­

ity of stochastic processes as the MSA-VAR model have been derived in KARLSEN 

[1990a], [1990b]. However in practice, their application has been found to be rather 

complicated (cf. HOLST et al. [1994]). 

In this study we will concentrate our analysis on modelling shifts in the (conditional) 

mean and the variance of V AR processes which simplifies the analysis. 

1.5 Conclusion and Outlook 

In the preceding discussion ofthis chapter MS(M)-VAR(p) processes have been in­

troduced as doubly stochastic processes where the conditional stochastic process is a 

Gaussian V AR(P) and the regime generating process is a Markov chain. As we have 

seen in the discussion of the relationship of the MS-V AR model to other non-linear 

models, the MS-V AR model can encompass many other time series models proposed 

in the literature or replicates at least some of their features. In the following chap­

ter these considerations are formalized to state-space representations of MS-VAR 

models where the measurement equation corresponds to the conditional stochastic 

process and the transition equation reflects the regime generating process. In Sec­

tion 2.5 the MS-VAR model will be compared to time-varying coefficient models 

with smooth variations in the parameters, i.e. an infinite number of regimes. 

lOModels where the regime is switching between deterministic and stochastic trends are considered by 

MCCULLOCH & TSAY [1994a]. 
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1.A Appendix: A Note on the Relation of SETAR to 

MS-AR Processes 

While the presumptions ofthe SETAR and the MS-AR model seem to be quite differ­

ent, the relation between both model alternatives is rather dose. Indeed, both models 

can be observationally equivalent, as the following example demonstrates: 

Example 6 Consider the SETAR model 

For d = 1 it has been shown by CARRASCO [1994, lemma 2.2] that ( 1.19) is a par­

ticular case 01 the Markov-switching model 

which is an MS/(2)-AR(O) model. For an unknown r, define the unobserved regime 

variable St as the binary variable 

such that 

ijYt-l ::; r 

ifYt-l > r 

Pr(Yt-1 ::; riSt-I, Y) 

Pr(/.L2 + (/.LI - J.L2)I(St-1 = 1) + Ut-I ::; r) 

Pr(Ut-1 ::; r - /.L2 - (/.LI - /.L2)I(St-1 = 1)) 

cI> (r - /-L2 - (/-LI -:2)I(St-1 = 1») 
Pr(St = 1ISt-r}. 

Hence Stlollows afirst order Markov process where the transition matrix is defined 

as 

p = [P11 P12] = [ cI>(r-/1) cp( I'-l;r) ]. 
cp(r-1'-2) cp(1'-2-r ) P2I P22 (J (J 
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If d > 1, the data can be considered as generated by d independent series which 

are each particular Markov processes. A proof can be based on the property 

Pr(Stl{ St-j }~1' YT ) = Pr(StISt-2' YT ); thus St follows a second order Markov 

chain, which can be reparametrized as a higher dimensional first order Markov 

chain. 


